Abstract:
An apparatus for contactless transportation of a deposition source is provided. The apparatus includes a deposition source assembly. The deposition source assembly includes the deposition source. The deposition source assembly includes a first active magnetic unit. The apparatus includes a guiding structure extending in a source transportation direction. The deposition source assembly is movable along the guiding structure. The first active magnetic unit and the guiding structure are configured for providing a first magnetic levitation force for levitating the deposition source assembly.
Abstract:
An apparatus for processing a substrate includes an inspection system disposed in a first position to detect the location and orientation of the substrate supported on a supporting surface of a processing nest positioned in the first position and one or more processing heads disposed in the second and third positions and configured to perform a first and a second process on the substrate when the processing nest is moved to the second and third positions by an actuator assembly. A method for processing a substrate includes detecting the location and orientation of the substrate disposed on the processing nest which is positioned in the first position and aligning one or more processing heads to the substrate when the processing nest is positioned in the second and third positions and under the processing heads using data detected by an inspection system positioned in the first position.
Abstract:
Embodiments of the present invention provide an apparatus and method for processing substrates using a multiple screen printing chamber processing system that has an increased system throughput, improved system uptime, and improved device yield performance, while maintaining a repeatable and accurate screen printing process on the processed substrates. In one embodiment, the multiple screen printing chamber processing system is adapted to perform a screen printing process within a portion of a crystalline silicon solar cell production line in which a substrate is patterned with a desired material, and then processed in one or more subsequent processing chambers.
Abstract:
A method of detecting the alignment of a substrate during a sequence of printing steps, comprises detecting in a detection unit a position of at least one printing track that forms a printed pattern onto a surface of the substrate in a first printing station, determining a reference point in at least a portion of the printing track, comparing the actual position of the reference point with an expected or previously detected position of the reference point, determining an offset between the actual position and the expected or previously detected position of the reference point, adjusting the reciprocal position between the printing head of a second printing station and the substrate to account for the determined offset, and then printing a second pattern over the first pattern.
Abstract:
Embodiments of the present invention provide an apparatus and method for processing substrates using a multiple screen printing chamber processing system that has an increased system throughput, improved system uptime, and improved device yield performance, while maintaining a repeatable and accurate screen printing process on the processed substrates. In one embodiment, the multiple screen printing chamber processing system is adapted to perform a screen printing process within a portion of a crystalline silicon solar cell production line in which a substrate is patterned with a desired material, and then processed in one or more subsequent processing chambers.
Abstract:
Embodiments of the invention may provide a method of printing one or more print tracks on a print support, or substrate, comprising two or more printing steps in each of which a layer of material is deposited on the print support according to a predetermined print profile. In each printing step, subsequent to the first step, each layer of material is deposited at least partially on top of the layer of material printed in the preceding printing step, so that each layer of printed material has an identical or different print profile with respect to at least a layer of material underneath. The method may further comprise depositing material in each printing step that is equivalent to or different from the material deposited in at least one of other the print layers.
Abstract:
A method for multi-layer printing on a support, comprising a first printing step performed in a printing station in a system, one or more subsequent printing steps that are performed in one or more subsequent printing stations in the system and a plurality of alignment steps performed in the system, wherein the alignment steps are used to effect the correct positioning of a material printed in a subsequent printing step. The method comprises, downstream of each printing step and upstream of each alignment step, a control step in which detection devices detect the position of a layer printed on a support and/or the position of the support in the system by use of a control unit that compares at least one of the positions detected with predefined positions and/or with the positions detected in the previous control step, and wherein the results of the comparison are used in the alignment step.
Abstract:
Embodiments of the invention may provide a method of printing one or more print tracks on a print support, or substrate, comprising two or more printing steps in each of which a layer of material is deposited on the print support according to a predetermined print profile. In each printing step, subsequent to the first step, each layer of material is deposited at least partially on top of the layer of material printed in the preceding printing step, so that each layer of printed material has an identical or different print profile with respect to at least a layer of material underneath. The method may further comprise depositing material in each printing step that is equivalent to or different from the material deposited in at least one of other the print layers.
Abstract:
A method for depositing a material on a surface of a substrate includes depositing a first print material and a second print material on the surface of the substrate using a printing apparatus, and depositing a marker element on a portion of the substrate surface. The deposited first print material forms a plurality of first print tracks in a pattern and the deposited second print material forms one or more second print tracks on the surface of the substrate. In addition, the second print tracks includes a centering feature, where there is no second print material within the centering feature and at least a portion of the centering feature is disposed on the portion of the surface of the substrate having the marker element. Further, at least a portion of the second print tracks cover at least a portion of the plurality of first print tracks.
Abstract:
An apparatus for screen printing a surface of a substrate includes a screen printing net, a print extremity element, and a supporting structure supporting the print extremity element. The supporting structure includes a slider coupled to the print extremity element and adapted to guide the movement of the print extremity element in a first direction, a support frame having a housing that is associated with a portion of the slider so as to allow movement of the slider relative to the support frame, and an actuation member coupled to the slider. The print extremity element urges a print material through the screen printing net onto the surface of the substrate. The actuation member positions the print extremity element relative to the screen printing net in the first direction, and includes magnets disposed within the housing of the support frame, and an electric coil disposed proximate to the magnets.