摘要:
Distributed fiber optic sensors formed by covering the fibers with tubing are provided. The tubing including responsive materials formulated or configured to, responsive to exposure to one of a target chemical species and a target radiation particle, change a relative size and generate a localized effect on or in the optical fiber.
摘要:
Distributed fiber optic chemical and radiation sensors formed by coating the fibers with certain types of response materials are provided. For distributed chemical sensors, the coatings are reactive with the targets; the heat absorbed or released during a reaction will cause a local temperature change on the fiber. For distributed radiation sensors, coating a fiber with a scintillator enhances sensitivity toward thermal neutrons, for example, by injecting light into the fiber. The luminescent components in these materials are taken from conjugated polymeric and oligomeric dyes, metal organic frameworks with sorbed dyes, and two-photon-absorbing semiconductors. The compositions may exhibit strong gamma rejection. Other scintillators combining luminescent materials with neutron converters are available. With a multiple-layer coating, it may be possible to identify the presence of both neutrons and gamma rays, for example. Coatings may be applied during manufacture or in the field.
摘要:
Water-soluble polymeric adhesive compositions and their use as delivery vehicles for carrying therapeutic agents on implantable devices, such as vascular grafts, are disclosed. Use of drug-coated vascular grafts is demonstrated for delivery of the therapeutic agents in vivo, thereby inhibiting restenosis or neointimal hyperplasia of the vascular graft and inhibiting infection at the vascular graft site. Methods of forming the adhesive and making the coated vascular grafts are also disclosed.
摘要:
The invention relates to a method for the controlled delivery of a drug as a function of bioavailable drug concentration, a sensor device for detecting bioavailable drug concentration, and a delivery device that controls delivery of the drug based on the real-time detection of bioavailable drug concentration.
摘要:
As described below, the present invention features compositions and methods for inhibiting inflammation in connection with an acellular template (e.g., an electrospun template). In one embodiment, the template is impregnated with an agent (e.g., N-α-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide (Cl-amidine)) that inhibits a peptidylarginine deaminase (e.g., PAD4).
摘要:
Here provided is a method for regulating retinal endothelial cell viability in a mammal by administering to the mammal a therapeutically effective amount of a quinic acid analog. The method may be applied to prevent, treat or cure pathological conditions of retinal endothelial cells associated with radiation retinopathy, diabetic retinopathy and chemotherapy for retinoblastoma.
摘要:
Disclosed are compositions and methods for treating or preventing colonic barrier dysfunction in a human by administering to the human in need thereof a pharmaceutically effective amount of an LPA2 receptor agonist or N-Acetyl L-Cysteine.
摘要:
Water-soluble polymeric adhesive compositions and their use as delivery vehicles for carrying therapeutic agents on implantable devices, such as vascular grafts, are disclosed. Use of drug-coated vascular grafts is demonstrated for delivery of the therapeutic agents in vivo, thereby inhibiting restenosis or neointimal hyperplasia of the vascular graft and inhibiting infection at the vascular graft site. Methods of forming the adhesive and making the coated vascular grafts are also disclosed.
摘要:
Here provided is a method for regulating retinal endothelial cell viability in a mammal by administering to the mammal a therapeutically effective amount of a quinic acid analog. The method may be applied to prevent, treat or cure pathological conditions of retinal endothelial cells associated with radiation retinopathy, diabetic retinopathy and chemotherapy for retinoblastoma.
摘要:
Here provided is a method for regulating retinal endothelial cell viability in a mammal by administering to the mammal a therapeutically effective amount of a quinic acid analog. The method may be applied to prevent, treat or cure pathological conditions of retinal endothelial cells associated with radiation retinopathy, diabetic retinopathy and chemotherapy for retinoblastoma.