Abstract:
A manufacturing method for a semiconductor device having a metal gate includes providing a substrate having at least a first semiconductor device formed thereon, forming a first gate trench in the first semiconductor device, forming a first work function metal layer in the first gate trench, and performing a decoupled plasma oxidation to the first work function metal layer.
Abstract:
A semiconductor structure includes a substrate, an oxide layer, a metallic oxynitride layer and a metallic oxide layer. The oxide layer is located on the substrate. The metallic oxynitride layer is located on the oxide layer. The metallic oxide layer is located on the metallic oxynitride layer. In addition, the present invention also provides a semiconductor process for forming the semiconductor structure.
Abstract:
A through silicon via process includes the following steps. A substrate having a front side and a back side is provided. A passivation layer is formed on the back side of the substrate. An oxide layer is formed on the passivation layer.
Abstract:
A semiconductor structure includes a substrate, an oxide layer, a metallic oxynitride layer and a metallic oxide layer. The oxide layer is located on the substrate. The metallic oxynitride layer is located on the oxide layer. The metallic oxide layer is located on the metallic oxynitride layer. In addition, the present invention also provides a semiconductor process for forming the semiconductor structure.
Abstract:
A through silicon via process includes the following steps. A substrate having a front side and a back side is provided. A passivation layer is formed on the back side of the substrate. An oxide layer is formed on the passivation layer.
Abstract:
A semiconductor process includes the following steps. A substrate having an oxide layer thereon is provided. A high temperature process higher than 1000° C. is performed to form a melting layer between the substrate and the oxide layer. A removing process is performed to remove the oxide layer and the melting layer.
Abstract:
A semiconductor process is provided, including: a substrate is provided, a buffer layer is formed, and a dielectric layer having a high dielectric constant is formed, wherein the methods of forming the buffer layer include: (1) an oxidation process is performed; and a baking process is performed; Alternatively, (2) an oxidation process is performed; a thermal nitridation process is performed; and a plasma nitridation process is performed; Or, (3) a decoupled plasma oxidation process is performed. Furthermore, a semiconductor structure fabricated by the last process is also provided.
Abstract:
A manufacturing method for a semiconductor device having a metal gate includes providing a substrate having at least a first semiconductor device formed thereon, forming a first gate trench in the first semiconductor device, forming a first work function metal layer in the first gate trench, and performing a decoupled plasma oxidation to the first work function metal layer.
Abstract:
A stress-adjusting method for use in a manufacturing system of a MOS device is provided. At first, a first stress layer is formed onto a substrate wherein at least two MOSFETs are previously formed on the substrate. The first stress layer overlies an inter-gate region between two adjacent gate regions of the MOSFETs and overlies the two adjacent gate regions. Then, the first stress layer in the inter-gate region is thinned. A second stress layer is further formed onto the substrate to overlie the thinned first stress layer in the inter-gate region to provide the resulting MOS device with satisfactory stress.