摘要:
Systems for treating water containing unwanted contaminants. More particularly, the present invention relates to waste water treatment systems including biological media used to aerobically or anaerobically treat solid and liquid waste in water for large and small-scale waste water systems in a way that minimizes the size of the system required to output high-quality, environmentally suitable water that is depleted of ammonia, nitrites, nitrates and other contaminants.
摘要:
A preactivated chromatography tip having covalent coupling functionality within a hydrodynamically designed micropipette tip assembly. The preactivated micro-channeled element provides high fluid directionality and throughput with minimum backpressure. A fibrous capture element is designed to optimize surface area to volume ratio, chemical resistance, a specific directional flow pattern, low non-specific binding of ligands, small sample volume, speed and low background.
摘要:
Method and apparatus for treating contaminants in water under anaerobic conditions is disclosed. The method includes adding to contaminated water a composition including an aqueous mixture of at least one carbohydrate and at least one alcohol and/or bacteriastat. The apparatus includes a source of growing nitrifying bacteria effective for treating contaminants under aerobic conditions, a source of growing bacteria effective for denitrification under anaerobic conditions, and a controller for introducing the growing bacteria in a predetermined amount over a predetermined period of time.
摘要:
A system (100), methods and apparatuses for transferring a primary medium (7) after incubating of the medium (7) are described. The system (100) includes a container (1) for containing a growth medium (7) and a sample (8) to be tested for the presence of target microorganisms. A system (100) for transferring a primary medium (7) after incubating of the medium (7) is also described. The system (100) includes an automated pouring mechanism for automatically pouring the primary medium (7) into a plurality of media receiving vessels (11) and a metering mechanism for metering the amount of medium (7) poured into each media receiving vessel (11). An automated tilting apparatus (20) tilts the container (1) to actuate pouring of a predetermined amount of the medium (7) from the container (1) into the media receiver (11). An apparatus (20) for automatically transferring medium (7) for collection and testing of microorganisms is also described. It includes an automated tilting apparatus (20) for automatically tilting the container (1) to actuate pouring of a predetermined amount of medium (7) from the container (1) into a media receiver (11). A container (1) for transferring medium (7) for collection and testing of microorganisms is also described. A manifold (12) for controlling the flow of a primary medium (7) transferred from a from a container (1) to a receptacle vessel (11) is also described.
摘要:
The invention is directed to a process and a medium for simultaneous determination of the number and presence of living fecal coliform and Escherichia coli in a sample comprising 6-O-alpha-D-galactopyranosyl-D-glucose or isopropyl-beta-D-thiogalactoside as a galactosidase inducer and methyl-beta-D-glucuronide as a glucuronidase inducer. The sterile semi-solid medium also comprises non-target bacterial inhibitors, target bacterial enhancers, and multiple fluorogen and/or chromogan substrates that produce color and fluorescence upon cleavage by a specific enzyme expressed by the target bacteria in which expression is enhanced. The simultaneous detection of total coliforms via its expression of beta-galactosidase, and Escherichia coli as the target bacteria via its expression of beta-galactosidase and beta-glucuronidase is achieved rapidly and efficiently using this medium.
摘要:
The tip has intermediate its end at least two axially spaced projections which are formed on the wall of its axial bore to extend radially and part way into the bore to define therebetween a reaction chamber in the bore of the tip. A spherical receptor element is mounted in the reaction chamber for limited pulsating movement therein in response to the movement of a fluid sample into and out of the tip. Additional projections may be formed in the bore to increase the turbulence created by the sample as it moves through the tip. The spherical element is coated with a ligand having a specific affinity for a target molecule in the sample.
摘要:
Scaleable bacterial injection, aeration and filtration system to effectively control microbial community function of aquatic systems. The present invention is a substantially simplified system with respect to handling growth and dispersion of microorganisms in solution and is also adaptable to many different end-use applications, including treatment of ornamental fish and aquaculture, pond and streams and sewage treatment systems. Initial microorganism materials are provided in the form of aqueous suspensions, which are incorporated into a large volume of water in a vessel. Microorganisms are entrapped inside a carrier that serves as a physical enclosure for cell retention. It has a porous structure to facilitate the diffusion of substances, such as ammonia, nitrate, nutrients, fuels and organic carbon, into its internal void volume, where substrate reduction is accomplished by entrapped cells. Specific species of microbes are injected into a filtration matrix that is bathed in oxygenated effluent and a portion of which is dispensed into an aqueous environment. The apparatus can be electronic, air or fluid driven and injected with the desired microbial species, preferably multiple time per day. Multi-stage media can be placed into packed filter units of convenient sizes for wastewater regeneration as well as natural water pollution reduction. The reactor canisters containing entrapped cells are portable and can be assembled off-site and then delivered to the field for installation and immediate operation. Bio-solid reduction, odor reduction, unplugging of leaching fields, conversion and reduction of nitrogen species in natural waters such as lakes and ponds, etc. can be accomplished.