Abstract:
Methods and data processing systems are disclosed for color management in a multiple display system. In one embodiment, a computer-implemented method includes color managing media based on a color gamut of a first display. Then, the method mirrors the media in a mirrored mode onto the first display and a second display. Then, the method processes the media for the second display through a gamma information for the second display. The gamma information is for a non-mirrored mode for the second display. The first and second displays may have different color gamuts. These color gamuts can be used for generating or modifying the gamma information for the second display. The gamma information may provide a color management for the second display that is based on the second display and is independent of the first display.
Abstract:
Methods and apparatuses for generating a low dynamic range image for a high dynamic range scene. In one aspect, a method to generate a low dynamic range image from a high dynamic range image, includes: determining one or more regions of the high dynamic range image containing pixels having values that are outside a first range and inside a second range; computing a weight distribution from the one or more regions; and generating the low dynamic range image from the high dynamic range image using the weight distribution. In another aspect, a method of image processing, includes: detecting one or more regions in a first image of a high dynamic range scene according to a threshold to generate a mask; and blending the first image and a second image of the scene to generate a third image using the mask.
Abstract:
Methods and apparatuses for generating a low dynamic range image for a high dynamic range scene. In one aspect, a method to generate a low dynamic range image from a high dynamic range image, includes: determining one or more regions of the high dynamic range image containing pixels having values that are outside a first range and inside a second range; computing a weight distribution from the one or more regions; and generating the low dynamic range image from the high dynamic range image using the weight distribution. In another aspect, a method of image processing, includes: detecting one or more regions in a first image of a high dynamic range scene according to a threshold to generate a mask; and blending the first image and a second image of the scene to generate a third image using the mask.
Abstract:
Methods and apparatuses for color correction that includes gamma correction. One embodiment of the present invention pre-processes the native device information of a color device (e.g., a color display device) to generate pseudo-native device information such that when a single, unique function is applied on the pseudo-native device information, a customized look up table for gamma correction in a video card is generated. The customized look up table is calibrated for the optimization of color rendering for skin tone in one region in a color space while maintaining the gray colors for the user interface elements in another region in the color space.
Abstract:
Some embodiments of the invention provide novel methods for converting the color region of images. For instance, the method of some embodiments converts the color of an image from one color region (e.g., from a Rec. 601 color region) to another color region (e.g., to a Rec. 709 color region). In some embodiments, the method receives the image in a first color format that is non-linearly encoded within a first color region. Without performing a linearization operation to linearize the color component values of the image, the method then converts the image into a second color format that is defined with respect to a second color region. In some embodiments, the color-converted image is non-linearly encoded in the second color region.
Abstract:
Methods and apparatuses for generating a low dynamic range image for a high dynamic range scene. In one aspect, a method to generate a low dynamic range image from a high dynamic range image, includes: determining one or more regions of the high dynamic range image containing pixels having values that are outside a first range and inside a second range; computing a weight distribution from the one or more regions; and generating the low dynamic range image from the high dynamic range image using the weight distribution. In another aspect, a method of image processing, includes: detecting one or more regions in a first image of a high dynamic range scene according to a threshold to generate a mask; and blending the first image and a second image of the scene to generate a third image using the mask.
Abstract:
The disclosed embodiments provide a system that performs document scanning The system includes a scanner and a computing device. To enable detection of the computing device in proximity to the scanner, the computing device may be configured to advertise a scan-receiving capability using a discovery protocol. Next, the scanner may use the discovery protocol to identify a set of computing devices in proximity to the scanner, including the computing device. The scanner may then provide the set of computing devices to a user of the scanner and obtain, from the user of the scanner, a selection of the computing device as a recipient of the scanned document. Finally, the scanner may send the scanned document to the computing device over a network connection with the computing device.
Abstract:
A method for adjusting the characteristics of a display. The method for adjusting the characteristics of the display may include constructing color models as a function of a parameter such as temperature. Furthermore, the color model may be used to determine adjustment values to be applied to a display. The adjustment values may be organized in a table as a function of temperature and color values. The adjustment values may be determined from measurements.
Abstract:
Methods and apparatuses for performing color manipulation using virtual gamuts. In one aspect of the invention, a method to perform color manipulation on a digital processing system includes: performing color manipulation using a virtual gamut of a device if a real gamut of the device is poor in quality. When the real gamut of the device is wide, color manipulations are performed using the real gamut of the device. In one example according to this aspect, whether or not the real gamut of the device is poor in quality is determined by comparing an area of the real gamut with a threshold gamut area in a chromaticity diagram. A virtual profile of the device specifies the virtual gamut of the device.
Abstract:
The described embodiments provide a system that facilitates a switch from using a first graphics-processing unit (GPU) to using a second GPU to drive a display. During operation, upon generation of a request to switch from using the first GPU to using the second GPU as a signal source for driving the display, the system obtains a transform (such as a lookup table) that enables the displayed color output from the second GPU to substantially match the displayed color output from the first GPU. The system then makes the transform available for use by the second GPU in driving the display.