Abstract:
A method for dynamically modifying a characteristic for an electronic device. The method includes activating by a processor a first profile having a first characteristic setting and a first state for an input/output (IO) device. Once the first profile is activated, receiving an input by a sensor and communicating the input to the processor. The method then includes activating by the processor a second profile having a second characteristic setting and a second state for the IO device. The second profile modifies a component of the IO device to include a second characteristic setting and a second state.
Abstract:
A method for adjusting the characteristics of a display. The method for adjusting the characteristics of the display may include constructing color models as a function of a parameter such as temperature. Furthermore, the color model may be used to determine adjustment values to be applied to a display. The adjustment values may be organized in a table as a function of temperature and color values. The adjustment values may be determined from measurements.
Abstract:
A method for dynamically modifying a characteristic for an electronic device. The method includes activating by a processor a first profile having a first characteristic setting and a first state for an input/output (IO) device. Once the first profile is activated, receiving an input by a sensor and communicating the input to the processor. The method then includes activating by the processor a second profile having a second characteristic setting and a second state for the IO device. The second profile modifies a component of the IO device to include a second characteristic setting and a second state.
Abstract:
A system for correcting an output device for the effects reflected ambient illumination comprises an output device, a calibration memory, a reflectivity memory, a system memory, a processor, an input device, a video card, a color display memory, and a reflection device of known reflectivity. The color display memory stores a first graphical interface and a second graphical interface. The first graphical interface displays a range of intensities of outputs that the display device can generate. The second graphical interface displays a range of hues that the display device can generate. The reflection device defines an aperture. The reflection device is compared to the first graphical interface and the second graphical interface by viewing the interfaces through the aperture. The present invention includes a method for compensating an output device for reflected ambient illumination. The system receives a first input of an intensity of the first graphical interface that appears to match the ambient illumination reflected from the reflection device; the system then receives a second input of a hue of the second graphical interface that appears to match the ambient illumination reflected from the reflection device. The system determines the intensity and hue of the ambient illumination reflected from the output device by matching the intensity and hue of the ambient illumination reflected from the reflection device with the output of the output device. The system then adjusts the outputs of the output device to compensate for the reflected ambient illumination.
Abstract:
The present disclosure relates generally to systems and techniques for applying color adjustments to a display. In certain embodiments, the color adjustment techniques may be employed to transition current color correction values, which are based on a previously detected temperature of the display, to target correction values, which are based on a presently detected temperature of the display. Adjustment increments for each color channel of the display may be determined based on the color channel that has the largest difference between the current color correction value and the target color correction value. In particular, the number of adjustment steps may be determined so that the adjustment increment for each channel is less than or equal to a maximum adjustment increment.
Abstract:
Systems and methods related to providing peripheral device functionality is described herein. In one embodiment, a method of operating a host computing device is described. The method includes communicatively coupling with a keyboard and querying the keyboard for a descriptor. Receiving the descriptor from the keyboard, wherein the descriptor includes data representative of a language, layout, and key mappings for the keyboard. Storing the data from the descriptor at the host and publishing strings for proper translation and interpretation of input received from the keyboard.
Abstract:
Systems and methods related to providing peripheral device functionality is described herein. In one embodiment, a method of operating a host computing device is described. The method includes communicatively coupling with a keyboard and querying the keyboard for a descriptor. Receiving the descriptor from the keyboard, wherein the descriptor includes data representative of a language, layout, and key mappings for the keyboard. Storing the data from the descriptor at the host and publishing strings for proper translation and interpretation of input received from the keyboard.
Abstract:
The present disclosure relates generally to systems and techniques for applying color adjustments to a display. In certain embodiments, the color adjustment techniques may be employed to transition current color correction values, which are based on a previously detected temperature of the display, to target correction values, which are based on a presently detected temperature of the display. Adjustment increments for each color channel of the display may be determined based on the color channel that has the largest difference between the current color correction value and the target color correction value. In particular, the number of adjustment steps may be determined so that the adjustment increment for each channel is less than or equal to a maximum adjustment increment.
Abstract:
A method for adjusting the characteristics of a display. The method for adjusting the characteristics of the display may include constructing color models as a function of a parameter such as temperature. Furthermore, the color model may be used to determine adjustment values to be applied to a display. The adjustment values may be organized in a table as a function of temperature and color values. The adjustment values may be determined from measurements.