Abstract:
A Talbot interferometer includes a diffraction grating, an image pickup device, a moving unit configured to move at least one of the diffraction grating and the image pickup device in an optical axis direction of the test object, and a computer configured to adjust a position of the at least one of the diffraction grating and the image pickup device using the moving unit so that a Talbot condition can be met, based on a spatial frequency spectrum obtained from a plurality of interference fringes captured by the image pickup device while moving the at least one of the diffraction grating and the image pickup device using the moving unit.
Abstract:
A refractive index distribution measurement method includes the steps of measuring a first transmission wavefront of a test object by introducing reference light to the test object immersed in a first medium having a first refractive index lower than that of the test object by 0.01 or more, measuring a second transmission wavefront of the test object by introducing the reference light to the test object immersed in a second medium having a second refractive index lower than that of the test object by 0.01 or more and different from the first refractive index, and obtaining a refractive index distribution of the test object based on a measurement result of the first transmission wavefront and a measurement result of the second transmission wavefront.
Abstract:
The invention provides a measurement apparatus which measures a wavefront aberration of an optical system to be measured, the apparatus includes a measurement mask which is inserted on an object plane of the optical system to be measured, and includes a plurality of reflection units configured to generate spherical waves by reflecting light, the measurement mask including a reflection layer configured to reflect the light, a first layer which is stacked on the reflection layer, has a plurality of openings, and is made of a first substance, and a second layer which is stacked on the first layer, has a window configured to expose a region in which the plurality of openings are arrayed, and is made of a second substance different from the first substance, wherein the plurality of reflection units are formed by portions of the reflection layer, which are exposed through the plurality of openings.
Abstract:
A measuring method for measuring an interference fringe includes the steps of generating the interference fringe between light that has passed a target optical system, and a reference wave that is generated from part of the light that has passed a mask, determining whether contrast of the interference fringe is higher than a predetermined threshold, and changing a condition of generating the reference wave when the contrast is below the predetermined threshold.
Abstract:
The measuring method includes a step of causing reference light to enter an object placed in a first medium to measure a first transmitted wavefront, a step of causing the reference light to enter the object placed in a second medium to measure a second transmitted wavefront, a step of measuring first and second placement positions where the object is placed in the first and second media, and a calculating step of calculating an internal refractive index distribution of the object by using measurement results of the first and second transmitted wavefronts. The calculating step calculates the internal refractive index distribution from which a shape component of the object is removed by using the measurement results of the first and second transmitted wavefronts, and first and second reference transmitted wavefronts of a reference object to be placed at positions identical to the first and second placement positions.
Abstract:
The method measures first transmitted wavefronts and second transmitted wavefronts by respectively causing reference light to enter an object placed in plural placement states in a first medium and a second medium, calculates an aberration sensitivity with respect to changes of the placement state of the object, and calculates an alignment error of the object in each placement state by using the aberration sensitivity and the first and second transmitted wavefronts measured in each placement state. The method further calculates first and second reference transmitted wavefronts respectively acquirable when causing the reference light to enter the reference object placed in placement states including the alignment errors in the first medium and the second medium, and calculates a refractive index distribution of the object which a shape component thereof is removed, by using the first and second transmitted wavefronts and the first and second reference transmitted wavefronts.
Abstract:
A measurement apparatus includes a first mask that is arranged on an object plane of a target optical system, and has a window that transmits measurement light, a second mask that has a reflection surface for reducing coherence of the measurement light, and a diffraction grating configured to split the measurement light that has been reflected on the second mask, has passed the first mask and the target optical system, wherein a distance Lg between the diffraction grating and an image plane of the target optical system satisfies Lg=m·Pg2/λ where Pg is a grating pitch of the diffraction grating, λ is a wavelength of the measurement light, and m is an integer except for 0.
Abstract:
An exposure apparatus includes an illumination optical system. The illumination optical system includes a first member configured to define an illuminated region of a reflective mask having a pattern to be projected onto a substrate; a second member configured to define an illuminated region in which a measurement pattern used in measuring wavefront aberration of a projection optical system is illuminated, the second member being able to be inserted into and removed from an optical path of the illumination optical system; and a condensing mirror configured to condense light from the first member on the pattern to be projected onto the substrate and light from the second member on the measurement pattern. The illuminated region defined by the second member is smaller than the illuminated region defined by the first member.
Abstract:
A transmitted wavefront measuring method comprises the steps of emitting light 101 from a light source 100 onto an object to be measured 120 to receive interfering light transmitted through the object and a diffraction grating 130 on a light receiving portion 140 disposed at a predetermined distance from the diffraction grating to measure an intensity distribution of the interfering light T10, performing a Fourier transform of the intensity distribution to calculate a frequency distribution T20, and obtaining a transmitted wavefront of the object based on a primary frequency spectrum in the frequency distribution T30 to T90. The step of obtaining the transmitted wavefront comprises the steps of performing an inverse Fourier transform of the primary frequency spectrum with reference to a grating frequency of the diffraction grating to calculate a complex amplitude of the interfering light T60, and obtaining the transmitted wavefront based on the complex amplitude T90.
Abstract:
The method measures first transmitted wavefronts and second transmitted wavefronts by respectively causing reference light to enter an object placed in plural placement states in a first medium and a second medium, calculates an aberration sensitivity with respect to changes of the placement state of the object, and calculates an alignment error of the object in each placement state by using the aberration sensitivity and the first and second transmitted wavefronts measured in each placement state. The method further calculates first and second reference transmitted wavefronts respectively acquirable when causing the reference light to enter the reference object placed in placement states including the alignment errors in the first medium and the second medium, and calculates a refractive index distribution of the object which a shape component thereof is removed, by using the first and second transmitted wavefronts and the first and second reference transmitted wavefronts.