摘要:
Systems and methods for Optical Transport Network (OTN) adaptation to provide sub-rate granularity and distribution include segmenting an OTN signal into N flows of cells with associated identifiers, based on tributary slots of the OTN signal, wherein N≥0, and wherein the cells do not include unallocated payload from the OTN signal; switching the cells to a scheduler; and scheduling, from the scheduler, the cells for a line side modem.
摘要:
An active device lid for a device base. The device lid includes a heatsink proximate to a circuit assembly and configured to remove heat generated by the device base, the circuit assembly configured to generate an operating signal voltage for the device base, and a connector configured to connect the circuit assembly to the device base, where the device base is configured to connect to a device mounting substrate on a substrate side of the device base, and where the circuit assembly is configured to be at least partially located on an opposing side of the device base, the opposing side opposing the substrate side.
摘要:
Systems and methods, for an in-band communication channel in an optical network, include adapting one or more client signals into a line signal for transmission to the second node, and utilizing line adaptation bandwidth of the line signal for the in-band communication channel. The in-band communication channel is operationally independent from the one or more client signals while concurrently being transported together over the line signal. The line adaptation allows a rate of the line signal to be independent of rates of the one or more client signals.
摘要:
An Optical Transport Network (OTN) method, an OTN switching node method, and an OTN node utilize a “double wrapper” configuration to eliminate clock transients in OTN networks. That is, the systems and methods bury an ODU beneath another overclocked ODU thereby eliminating any interruptions due to clock transients, framing events or other disruptions. For example, an ODU2 can be mapped into an ODU2e, an ODU3 can be mapped into an ODU3e2, an ODU4 can be mapped into an ODUG or some other overclocked variant of ODU4, and the like. Specifically, ODU2e, ODU3e2, ODUG, etc. are overclocked variants of ODU2, ODU3, ODU4, etc. The systems and methods propose to use these overclocked signals to carry standard ODU signals to eliminate clock transient problems.
摘要:
A precision time transfer method, in a first node that communicates with a second node, to determine a difference in time between the first node and the second node, the precision time transfer method includes receiving a departure time, TD-A, from the second node, wherein the departure time is determined by the second node based on detecting a timing marker in a Forward Error Correction (FEC) frame or logical layer; determining an arrival time, TA-B, based on detecting the timing marker in the FEC frame; and determining a time difference based on the departure time and the arrival time wherein the timing marker is detected at a last point in a transmitter of the second node and at a first point in a receiver of the first node, during FEC processing.
摘要:
A precision time transfer method, in a first node that communicates with a second node, to determine a difference in time between the first node and the second node, the precision time transfer method includes receiving a departure time, TD-A, from the second node, wherein the departure time is determined by the second node based on detecting a timing marker in a Forward Error Correction (FEC) frame or logical layer; determining an arrival time, TA-B, based on detecting the timing marker in the FEC frame; and determining a time difference based on the departure time and the arrival time wherein the timing marker is detected at a last point in a transmitter of the second node and at a first point in a receiver of the first node, during FEC processing.
摘要:
An Optical Transport Network (OTN) transient management method, OTN node, and OTN network includes operating an OTN connection in a first mode in a network, the OTN connection traverses at least two nodes in the network, requesting a change in the OTN connection to a second mode which will cause a network transient, the change includes a timing change on the OTN connection affecting the at least two nodes, and performing transient management at the at least two nodes to mitigate the network transient, the transient management prevents spurious alarms due to the change between the first mode and the second mode.
摘要:
An Optical Transport Network (OTN) transient management method, OTN node, and OTN network includes operating an OTN connection in a first mode in a network, the OTN connection traverses at least two nodes in the network, requesting a change in the OTN connection to a second mode which will cause a network transient, the change includes a timing change on the OTN connection affecting the at least two nodes, and performing transient management at the at least two nodes to mitigate the network transient, the transient management prevents spurious alarms due to the change between the first mode and the second mode.
摘要:
A flexible mapping method to map a Physical Coding Sublayer (PCS) structure from Flexible Ethernet and/or Multi Link Gearbox (MLG) to Optical Transport Network (OTN), includes receiving one or more Virtual Lanes; and mapping each of the one or more Virtual Lanes into a Tributary Slot, wherein a rate and number of the Tributary Slot(s) in OTN is set based on a rate and number of the one or more Virtual Lanes. A transport system and a flexible de-mapping method are also described. The systems and methods map the generalized MLG-style group of lanes (virtual PHYs/PMDs) into an OPUflex Tributary Slot (TS) structure, keeping PCS structures intact, and creates a single ODUflex container with a matching rate of FlexE for end-to-end flow.
摘要:
Systems and methods for Optical Transport Network (OTN) adaptation to provide sub-rate granularity and distribution include segmenting an OTN signal into N flows of cells with associated identifiers, based on tributary slots of the OTN signal, wherein N≧0, and wherein the cells do not include unallocated payload from the OTN signal; switching the cells to a scheduler; and scheduling, from the scheduler, the cells for a line side modem.