摘要:
A method of using an exhaust flow simulation system to test the effects of exhaust system conditions on various materials. A typical exhaust flow simulator is a burner-based system, in which exhaust from burner combustion is exhausted through an exhaust line. A “test coupon” of the material may be placed at an appropriate location in the flow line, and tested to determine how it is affected by the exhaust resulting from various fuels and additives.
摘要:
A rapid setting, controlled low strength composition of Class C fly ash is provided having a quantity of hydrated lime and an iron chelating compound in an amount sufficient to accelerate the hydration and set time of the fly ash. In some examples, a filler material is added. A method for acceleration of the hydration and set time of a cementitious mixture is provided wherein hydrated lime is added to the cementitious mixture in an amount in the range of 0.1% to 15% by weight and an iron chelating compound in an amount in the range of 0.01% to 5.0% by weight of the cementitious material. Further, a calcium source and an iron chelating compound may be added to a Class C fly ash to accelerate the hydration and set time of the ash.
摘要:
A keratin hydrogel which can be used as a wound dressing and cell scaffolding. The keratin hydrogel is formed from clean, washed hair by partially oxidizing a significant percentage of disulfide linkages to form cysteic acid groups, while some disulfide linkages remain intact. The partially oxidized hair is treated with a reducing agent, thereby reducing most of the remaining disulfide linkages to cysteine-thioglycollate disulfide and cysteine groups. A soluble fraction of hair is collected and oxidized, such that the reduced sulfur groups are allowed to reform disulfide linkages, thereby binding the keratin together. The cysteic acid groups remain, providing hydrophilic sites within the hydrogel. A higher degree of partial oxidation results in a greater abundance of hydrophilic cysteic acid groups in the hydrogel.
摘要:
A keratin hydrogel which can be used as a wound dressing and cell scaffolding. The keratin hydrogel is formed from clean, washed hair by partially oxidizing a significant percentage of disulfide linkages to form cysteic acid groups, while some disulfide linkages remain intact. The partially oxidized hair is treated with a reducing agent, thereby reducing most of the remaining disulfide linkages to cysteine-thioglycollate disulfide and cysteine groups. A soluble fraction of hair is collected and oxidized, such that the reduced sulfur groups are allowed to reform disulfide linkages, thereby binding the keratin together. The cysteic acid groups remain, providing hydrophilic sites within the hydrogel. A higher degree of partial oxidation results in a greater abundance of hydrophilic cysteic acid groups in the hydrogel.
摘要:
A method of producing silicon nitride ceramics and silicon nitride ceramic composites. A mixture comprising a polysilazane and an additive effective to increase coupling between the mixture and electromagnetic energy is converted to a preceramic intermediate. The preceramic intermediate is treated with electromagnetic energy and thereby converted to a silicon nitride ceramic and/or a silicon nitride ceramic composite.
摘要:
A rapid setting, controlled low strength composition of Class C fly ash is provided having a quantity of hydrated lime and an iron chelating compound in an amount sufficient to accelerate the hydration and set time of the fly ash. In some examples, a filler material is added. A method for acceleration of the hydration and set time of a cementitious mixture is provided wherein hydrated lime is added to the cementitious mixture in an amount in the range of 0.1% to 15% by weight and an iron chelating compound in an amount in the range of 0.01% to 5.0% by weight of the cementitious material. Further, a calcium source and an iron chelating compound may be added to a Class C fly ash to accelerate the hydration and set time of the ash.
摘要:
A hydratable, highly absorbent keratin solid fiber or powder capable of absorbing a large weight excess of water may be produced by partially oxidizing hair keratin disulfide bonds to sulfonic acid residues and reacting the sulfonic acid residues with a cation. The neutralized suspension can be filtered, washed, and dried, leaving keratin solid which can be shredded into fibers and further ground into powder. Addition of water to the solid produces a hydrogel. The powder or hydrogel may be useful as an absorbent material, as a therapeutic for skin, or as an excipient. The keratin materials can be incorporated into nonwoven films. The hydrogel can be used as a biocompatible viscoelastic filler for implant applications. Another use for the absorbent keratin and keratin hydrogel is as an excipient in pharmaceutical and cosmetic applications.
摘要:
Methods for producing thin keratin films, sheets, and bulk materials, and products formed using these methods. One method includes providing hair, reducing the hair such that the disulfide linkages are broken and free cysteine thiol groups formed, separating out a more soluble keratin fraction in solution, forming a thin layer from the more soluble fraction, and air drying the keratin fraction in the presence of oxygen, thereby forming new disulfide bonds imparting strength to the resulting thin keratin film. One method includes reducing hair by heating the hair under nitrogen in an ammonium hydroxide and ammonium thioglycolate solution followed by centrifuging and collecting the supernatant containing the more soluble keratin fraction. The more soluble keratin in this method is precipitated using HCl, removed, and resuspended in ammonium hydroxide. The keratin solution thus formed is poured onto a flat surface and allowed to air dry into a thin keratin film. The film may be used as a wound dressing, a tissue-engineering scaffold, a diffusion membrane, a coating for implantable devices, and as a cell encapsulant. In another method, the keratin solution thus formed is concentrated, poured into a mold, and allowed to air dry into a three dimensional keratin product. The resulting bulk product can be used as a cross-linked implantable biomaterial for soft and hard tissue replacement. In another method, a keratin solution is emulsified and freeze dried, forming a porous, open cell keratin material.
摘要:
Methods for producing thin keratin films, sheets, and bulk materials, and products formed using these methods. One method includes providing hair, reducing the hair such that the disulfide linkages are broken and free cysteine thiol groups formed, separating out a more soluble keratin fraction in solution, forming a thin layer from the more soluble fraction, and air drying the keratin fraction in the presence of oxygen, thereby forming new disulfide bonds imparting strength to the resulting thin keratin film. One method includes reducing hair by heating the hair under nitrogen in an ammonium hydroxide and ammonium thioglycolate solution followed by centrifuging and collecting the supernatant containing the more soluble keratin fraction. The more soluble keratin in this method is precipitated using HCl, removed, and resuspended in ammonium hydroxide. The keratin solution thus formed is poured onto a flat surface and allowed to air dry into a thin keratin film. The film may be used as a wound dressing, a tissue-engineering scaffold, a diffusion membrane, a coating for implantable devices, and as a cell encapsulant. In another method, the keratin solution thus formed is concentrated, poured into a mold, and allowed to air dry into a three dimensional keratin product. The resulting bulk product can be used as a cross-linked implantable biomaterial for soft and hard tissue replacement. In another method, a keratin solution is emulsified and freeze dried, forming a porous, open cell keratin material.
摘要:
A sheet wound dressing formed of cross linked keratin. An insoluble, largely Beta keratin fraction from human hair is acidified to a low pH, preferably less than about 3, which partially solubilizes the keratin by weakening hydrogen bonds. The suspension is added to base, such as ammonium hydroxide, forming a slurry. The slurry is cast directly onto a flat surface, allowing the re-formation of cross-links including hydrogen bonds and disulfide bonds. The resulting cross-linked keratin sheet can be used as a sheet wound dressing or as a scaffolding for growth of cells. The insoluble keratin can be derived from human hair which is washed, rinsed, dried, chopped and treated with peracetic acid to break some accessible disulfide linkages. The treated hair is filtered, rinsed, dried, and ground into a keratin powder. The keratin powder is suspended in a mixture of ammonium hydroxide and ammonium thioglycollate and heated sufficiently to dissolve the soluble keratin fraction, followed by cooling and centrifugation to concentrate the insoluble, largely Beta keratin fraction.