Abstract:
Cell-based methods for rapid real time assay of a presence of Clostridium difficile toxin and/or cells are provided, using an assay having a toxin-enhancing antibody and a sensitive cell line carrying FcyR receptors, and kits for this assay. An ultrasensitive cell based immunocytotoxicity assay for detecting less then 1 pg/ml of C. difficile toxins in clinical samples. A TcdA-specific monoclonal antibody, AIH3, was found to significantly enhance the cytotoxicity of TcdA to macrophages and monocytes. The AIH3-dependent enhancement of glucosyltransferase activity, cytoskeleton disruption, and TNF-a production induced by TcdA was demonstrated also in RAW 264.7 cells. Methods for high level recombinant expression of C. difficile toxins in Bacillus cells, and vectors for expression, strains of Bacillus carrying the vectors are provided.
Abstract:
The present invention relates to methods, microarrays and kits for detecting one or more human astrovirus serotypes in a sample (e.g., a fecal sample) from an individual. The method includes amplifying nucleic acid molecules of the sample with one or more primers, to thereby obtain an amplified nucleic acid product; contacting the amplified nucleic acid product with one or more serotype specific probes having a nucleic acid sequence that is specific for only one astrovirus serotype in the group of astroviruses being assessed, wherein the nucleic acid sequence includes between about 9 and 25 nucleic acid bases (e.g., SEQ ID NO: 5-24); and detecting the hybridization complex. The presence of hybridization complexes with a serotype specific probe indicates the presence of one or more specific astrovirus serotypes, and the absence of hybridization complexes with a serotype specific probe indicates the absence of the specific astrovirus serotype. Identification of the astrovirus serotypes allows for one to diagnose an individual infected with the serotype. The present invention further includes microarrays having any one of the astrovirus specific probe, or kits having microarrays and reagents for carrying out the assay.
Abstract:
Methods for immunizing a subject to an antigen of an infectious agent, a tumor, or an allergen are provided, using vegetative cytoplasmic expression of the antigen or spore surface display of the antigen, and contacting the subject with a composition including a spore or a vegetative cell or both with or without an adjuvant. Also included are thermally-stable vaccine compositions using the method described above and kits including the compositions.
Abstract:
Human and humanized monoclonal antibodies which binds specifically to subunit A of Shiga like toxin II have been developed which are effective to prevent or ameliorate one or more symptoms of HUS in a human. Effective dosages for treatment or prevention range from approximately 0.1 to 5.0 mg of antibody/kg of patient weight. The examples demonstrate the preferred dosage ranges based on the pig model, and what is being tested in phase I clinical trials. Antibodies are preferably transfused over a period of two hours, although this will depend on the patient and the disease state at the time of treatment. Preferred dosages for treatment of humans are between 0.1 mg/kg-5.0 mg/kg of 5C120, or an equivalent dosage of another antibody to subunit A of STX2. In the most preferred embodiments, dosages of 0.1 mg/kg, 0.5 mg/kg, or 5.0 mg/kg of 5C12 (low dose, anticipated therapeutic dose based on animal data and high dose) are administered.
Abstract:
Novel human monoclonal antibodies derived from a transgenic mouse are disclosed as well as a process for the preparation of the novel monoclonals and a therapeutic method of treating an individual for hemolytic uremic syndrome or of protecting an individual against hemolytic uremic syndrome by administration of the monoclonals to the individual in need of treatment or protection.
Abstract:
Human and humanized monoclonal antibodies which binds specifically to subunit A of Shiga like toxin II have been developed which are effective to prevent or ameliorate one or more symptoms of HUS in a human. Effective dosages for treatment or prevention range from approximately 0.1 to 5.0 mg of antibody/kg of patient weight. The examples demonstrate the preferred dosage ranges based on the pig model, and what is being tested in phase I clinical trials. Antibodies are preferably transfused over a period of two hours, although this will depend on the patient and the disease state at the time of treatment. Preferred dosages for treatment of humans are between 0.1 mg/kg-5.0 mg/kg of 5C120, or an equivalent dosage of another antibody to subunit A of STX2. In the most preferred embodiments, dosages of 0.1 mg/kg, 0.5 mg/kg, or 5.0 mg/kg of 5C12 (low dose, anticipated therapeutic dose based on animal data and high dose) are administered.
Abstract:
Novel human monoclonal antibodies derived from a transgenic mouse are disclosed as well as a process for the preparation of the novel monoclonals and a therapeutic method of treating an individual for hemolytic uremic syndrome or of protecting an individual against hemolytic uremic syndrome by administration of the monoclonals to the individual in need of treatment or protection.
Abstract:
The present invention relates to a designer or recombinant ubiquitin ligase molecule that includes an antibody fragment that is specific for a toxin active fragment, wherein the toxin active fragment is an enzymatically active fragment of one or more toxins or toxin serotypes; and an E3-ligase domain that comprises an E3-ligase or polypeptide that facilitates E2-mediated ubiquitination of the toxin active fragment. In an embodiment, the composition further includes a delivery system that allow the designer ubiquitin ligase to enter the cell. The present invention further includes methods for treating an individual intoxicated with a toxin by administering the designer ubiquitin ligase of the present invention.
Abstract:
Novel human monoclonal antibodies derived from a transgenic mouse are disclosed as well as a process for the preparation of the novel monoclonals and a therapeutic method of treating an individual for hemolytic uremic syndrome or of protecting an individual against hemolytic uremic syndrome by administration of the monoclonals to the individual in need of treatment or protection.
Abstract:
A method for the simultaneous concentration of multiple toxins from large volumes of water. The method includes the steps of providing a disposable separation centrifuge bowl, the centrifuge bowl including a positively charged material at it's inner core. A large water sample contaminated with toxins from a group consisting of protozoa, bacteria, bacterial spores, and toxins is delivered to the centrifuge bowl. A centrifugal force is applied to the separation bowl. The water sample is concentrated to remove large particles of the toxins in the bowl due to the centrifugal forces. The concentrated water sample is passes through the positively charged inner core to capture any remaining concentrated targets by electrostatic forces and the concentrated targets are eluted.