Abstract:
The present invention relates to a nucleic acid sequence, comprising or coding for a coding region, encoding at least one peptide or protein comprising a pathogenic antigen or a fragment, variant or derivative thereof, at least one histone stem-loop and a poly(A) sequence or a polyadenylation signal. Furthermore the present invention provides the use of the nucleic acid for increasing the expression of said encoded peptide or protein. It also discloses its use for the preparation of a pharmaceutical composition, especially a vaccine, e.g. for use in the treatment of infectious diseases. The present invention further describes a method for increasing the expression of a peptide or protein comprising a pathogenic antigen or a fragment, variant or derivative thereof, using the nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal.
Abstract:
The present invention relates to a nucleic acid sequence, comprising or coding for a coding region, encoding at least one peptide or protein comprising a pathogenic antigen or a fragment, variant or derivative thereof, at least one histone stem-loop and a poly(A) sequence or a polyadenylation signal. Furthermore the present invention provides the use of the nucleic acid for increasing the expression of said encoded peptide or protein. It also discloses its use for the preparation of a pharmaceutical composition, especially a vaccine, e.g. for use in the treatment of infectious diseases. The present invention further describes a method for increasing the expression of a peptide or protein comprising a pathogenic antigen or a fragment, variant or derivative thereof, using the nucleic acid comprising or coding for a histone stem-loop and a poly(A) sequence or a polyadenylation signal.
Abstract:
The present invention relates to nucleic acids of the general formula (I): (NuGlXmGnNv)a and derivatives thereof as an immunostimulating agent/adjuvant and to compositions containing same, optionally comprising an additional adjuvant. The present invention furthermore relates to a pharmaceutical composition or to a vaccine, each containing nucleic acids of formula (I) above and/or derivatives thereof as an immunostimulating agent, and optionally at least one additional pharmaceutically active component, e.g. an antigenic agent. The present invention relates likewise to the use of the pharmaceutical composition or of the vaccine for the treatment of cancer diseases, infectious diseases, allergies and autoimmune diseases etc. Likewise, the present invention includes the use of nucleic acids of the general formula (I): (NuGlXmGnNv)a and/or derivatives thereof for the preparation of a pharmaceutical composition for the treatment of such diseases.
Abstract:
The present application describes an antibody-coding, non-modified or modified RNA and the use thereof for expression of this antibody, for the preparation of a pharmaceutical composition, in particular a passive vaccine, for treatment of tumours and cancer diseases, cardiovascular diseases, infectious diseases, autoimmune diseases, virus diseases and monogenetic diseases, e.g. also in gene therapy. The present invention furthermore describes an in vitro transcription method, in vitro methods for expression of this antibody using the RNA according to the invention and an in vivo method.
Abstract:
Provided are methods for activating an antigen-presenting cell and eliciting an immune response by inducing pattern recognition receptor activity, and CD40 activity. Also provided are methods for activating an antigen-presenting cell and eliciting an immune response by inducing CD40 activity without prostaglandin E2. Also provided are methods for activating an antigen-presenting cell and eliciting an immune response by inducing an inducible chimeric molecule comprising a region of a pattern recognition receptor or an adaptor thereof.
Abstract:
A method of treating chronic hepatitis B is disclosed that comprises administering a T cell-stimulating amount of a vaccine to a patient. The vaccine comprises an immunogenic amount of chimeric, carboxy-terminal truncated hepatitis B virus nucleocapsid (core) protein (HBc) that is engineered for both enhanced stability of self-assembled particles and the substantial absence of nucleic acid binding by those particles. The chimeric protein molecule can include one or more immunogenic epitopes peptide-bonded to one or more of the N-terminus, the immunogenic loop or the C-terminus of HBc. The enhanced stability of self-assembled particles is obtained by the presence of at least one heterologous cysteine residue near one or both of the amino-terminus and carboxy-terminus of the chimer molecule.
Abstract:
This invention relates to preparations of viruses, e.g. for vaccine or other pharmaceutical or research use, to their stabilization, and to processes of producing such preparations, as well as to their use, e.g. as vaccines or as virus vectors. The formulations comprise a sugar, a preservative, a dispersing agent, a thermal stability agent, a buffer, and up to three distinct types of amino acids without impacting the structural appearance of the lyophilized product.
Abstract:
A recombinant poxvirus lacking a functional gene corresponding to BI4R in the WR strain of VACV for use as a medicament especially as a vaccine against a disease caused by a poxvirus or another pathogenic agent or for use as a medicament against a disease associated with aberrant cells. An isolated nucleotide or polypeptide encoding a poxvirus sequence corresponding to the sequence of B14 in the WR strain of VACV especially for use as a medicament against undesirable inflammation, immune activation or NF-κB activation. Related compositions and methods.
Abstract:
A method of treating chronic hepatitis B is disclosed that comprises administering a T cell-stimulating amount of a vaccine to a patient. The vaccine comprises an immunogenic amount of chimeric, carboxy-terminal truncated hepatitis B virus nucleocapsid (core) protein (HBc) that is engineered for both enhanced stability of self-assembled particles and the substantial absence of nucleic acid binding by those particles. The chimeric protein molecule can include one or more immunogenic epitopes peptide-bonded to one or more of the N-terminus, the immunogenic loop or the C-terminus of HBc. The enhanced stability of self-assembled particles is obtained by the presence of at least one heterologous cysteine residue near one or both of the amino-terminus and carboxy-terminus of the chimer molecule.
Abstract:
The present invention relates to methods for changing the load state of MHC molecules with ligands, the change in the load state being catalysed by a compound of formulae I, IA, II, III or IV1 to IV3. The invention relates further to the use of compounds of formulae I, IA, II, III or IV1 to IV3 or to the use of MHC molecules loaded with ligands, which molecules can be prepared by a method according to the invention, for the treatment of disorders or conditions that are associated with various pathologically excessive or absent immune responses and also for triggering tumour-specific, pathogen-specific or autoreactive immune responses. The invention additionally relates to the use of such compounds for the treatment and diagnosis of cancer, infectious diseases, autoimmune diseases and for attenuating aggressive immune reactions, as well as to the preparation of a vaccine or of a pharmaceutical composition for the treatment of the mentioned disorders or conditions.