摘要:
The invention concerns an arrangement for controlling a non-volatile memory arrangement for a circuit comprising: a micromechanical element coupled to a substrate; the micromechanical element being responsive to deflection means arranged on the substrate to control the movement of the micromechanical element between one or more stable states. In addition, the invention concerns a method for controlling a non-volatile memory device arrangement comprising: applying one or more signals to a deflection means for moving a micromechanical element between one or more stable states. To enhance the efficacy of the invention there is further provided a shorting circuit for use in the non-volatile memory arrangement.
摘要:
A method of controlling a lithographic apparatus, the method including setting an illumination system of the lithographic apparatus to effect a selected illumination mode, measuring a value of a first parameter of the lithographic apparatus, calculating a value of a second parameter of a projected image of a feature of a test pattern having a plurality of features using a model of the lithographic apparatus and the measured value of the first parameter, and controlling the lithographic apparatus with reference to the calculated value of the second parameter.
摘要:
The invention concerns an arrangement for controlling a non-volatile memory arrangement for a circuit comprising: a micromechanical element coupled to a substrate; the micromechanical element being responsive to deflection means arranged on the substrate to control the movement of the micromechanical element between one or more stable states. In addition, the invention concerns a method for controlling a nonvolatile memory device arrangement comprising: applying one or more signals to a deflection means for moving a micromechanical element between one or more stable states. To enhance the efficacy of the invention there is further provided a shorting circuit for use in the non-volatile memory arrangement.
摘要:
A non-volatile memory device and method of manufacturing a non-volatile micro-electromechanical memory cell. The method comprises the first step of depositing a first layer of sacrificial material on a substrate by use of Atomic Layer Deposition The second step of the method is providing a cantilever (101) over at least a portion of the first layer of sacrificial material. The third step is depositing, by use of Atomic Layer Deposition, a second layer of sacrificial material over the first layer of sacrificial material and over a portion of the cantilever such that a portion of the cantilever is surrounded by sacrificial material. The fourth step is providing a further layer material (107) which covers at least a portion of the second layer of sacrificial material. Finally, the last step is etching away the sacrificial material surrounding the cantilever, thereby defining a cavity (102) in which the cantilever is suspended.
摘要:
A lithographic method is provided that includes using an illumination system to provide a beam of radiation having an illumination mode, using a patterning device to impart the radiation beam with a pattern in its cross-section, and projecting the patterned radiation beam onto a substrate. The illumination mode is adjusted after the radiation beam has been projected onto the substrate. The adjustment is arranged to reduce the effect of optical aberrations due to lens heating on the projected pattern during projection of the pattern onto a subsequent substrate.
摘要:
A lithographic method is provided and comprises using an illumination system to provide a beam of radiation having an illumination mode, using a patterning device to impart the radiation beam with a pattern in its cross-section, and projecting the patterned radiation beam onto a plurality of substrates. The illumination mode is adjusted after the radiation beam has been projected onto one or more substrates. The adjustment is arranged to reduce the effect of aberrations due to lens heating on the projected pattern during projection of the pattern onto one or more subsequent substrates.
摘要:
A method for configuring an illumination source of a lithographic apparatus is presented. The method includes dividing the illumination source into pixel groups, each pixel group including one or more illumination source points; selecting an illumination shape to expose a pattern, the illumination shape formed with at least one pixel group; iteratively calculating a lithographic metric as a result of a change of state of a pixel group in the illumination source, the change of the state of the pixel group creating a modified illumination shape; and adjusting the illumination shape based on the iterative results of calculations.
摘要:
A method for configuring an illumination source of a lithographic apparatus is presented. The method includes dividing the illumination source into pixel groups, each pixel group including one or more illumination source points; selecting an illumination shape to expose a pattern, the illumination shape formed with at least one pixel group; iteratively calculating a lithographic metric as a result of a change of state of a pixel group in the illumination source, the change of the state of the pixel group creating a modified illumination shape; and adjusting the illumination shape based on the iterative results of calculations.
摘要:
A method of controlling a lithographic apparatus, the method including setting an illumination system of the lithographic apparatus to effect a selected illumination mode, measuring a value of a first parameter of the lithographic apparatus, calculating a value of a second parameter of a projected image of a feature of a test pattern having a plurality of features using a model of the lithographic apparatus and the measured value of the first parameter, and controlling the lithographic apparatus with reference to the calculated value of the second parameter.
摘要:
A lithographic method is provided that includes using an illumination system to provide a beam of radiation having an illumination mode, using a patterning device to impart the radiation beam with a pattern in its cross-section, and projecting the patterned radiation beam onto a substrate. The illumination mode is adjusted after the radiation beam has been projected onto the substrate. The adjustment is arranged to reduce the effect of optical aberrations due to lens heating on the projected pattern during projection of the pattern onto a subsequent substrate.