摘要:
Embodiments of the invention provide a cellulose-sheathed carbon nanotube fiber. One aspect of the invention provides a sheathed nanotube fiber comprising: a carbon nanotube fiber; and a cellulose sheath extending co-axially along at least a first portion of a length of the carbon nanotube fiber. Another aspect of the invention provides a method of forming a sheathed carbon nanotube fiber, the method comprising: co-electrospinning a carbon nanotube fiber gel core within a cellulose solution sheath.
摘要:
A silver nanocomposite, a formation method for forming the silver nanocomposite, and an application method utilizing the silver nanocomposite. The silver nanocomposite includes a silver nanoparticle conjugated to a glycosaminoglycan (GAG) or glucose. The formation method includes chemically reacting silver nitrate with a reducing agent to form a silver nanoparticle conjugated to the reducing agent of a GAG or glucose. The application method may include topically applying the silver nanocomposite to a wound or burn as an anti-microbial with respect to an antibiotic-resistant genotype in the wound or burn, wherein the silver nanocomposite topically applied includes the silver nanoparticle conjugated to the GAG of 2,6-diaminopyridinyl heparin (DAPHP) or hyaluronan (HA). The application method may include applying the silver nanocomposite as a coating to plastic, a catheter, or a surgical tool, wherein the silver nanocomposite applied as the coating includes the silver nanoparticle conjugated to the GAG of DAPHP.
摘要:
Embodiments of the invention provide a cellulose-sheathed carbon nanotube fiber. One aspect of the invention provides a sheathed nanotube fiber comprising: a carbon nanotube fiber; and a cellulose sheath extending co-axially along at least a first portion of a length of the carbon nanotube fiber. Another aspect of the invention provides a method of forming a sheathed carbon nanotube fiber, the method comprising: co-electrospinning a carbon nanotube fiber gel core within a cellulose solution sheath.
摘要:
A purified heparinase I, II and III free of lyase activity and each having a molecular weight of 42,800 84,100, 70,800, respectively, are produced by culturing Flavobacterium heparinum. The kinetic properties of the heparinases have been determined as well as the conditions to optimize their activity and stability.
摘要:
The present invention relates to method for the preparation of glycosaminoglycan compositions, isolated glycosaminoglycan compositions obtainable therefrom, glycosaminoglycan compositions, kits and use thereof. More specifically, the present invention provides a method for isolating glycosaminoglycan compositions of the invention from human follicular fluid. The compositions, related methods and uses according to the present invention are useful in the treatment and/or prevention of thrombotic diseases, cell proliferation disorders, proteolysis and inflammation mediated cell invasion and infertility.
摘要:
The invention is directed to a method for synthesizing C-glycosides of ulosonic acids, as well as intermediates thereof and C-glycosides prepared by this method.
摘要:
A method for synthesizing C-glycosides of ulosonic acids such as Neu5Ac, by which diastereocontrolled synthesis of &agr;-C-glycosides of ulosonic acids is attained is disclosed. In the method of the present invention, an ulosonic acid sulfone or phosphite is reacted with an aldehyde or ketone compound in the presence of a lanthanide metal halide.
摘要:
New glucose-based surfactants and methods of their synthesis are described. The surfactants are synthesized through the preparation of an intermediate glucose 4,6-cyclic sulfate. The surfactants are economical to prepare and have excellent surface-active properties.
摘要:
There is disclosed a tetrasaccharide, a hexasaccharide, on octasaccharide and a decasaccharide all capable of inhibiting complement activation and having less tha 33% of undigested native heparin's anticoagulation activity.
摘要:
Heparosan is sulfated at the iduronic acid residue by providing a reaction mixture comprising C5 epimerase to convert glucuronic acid to iduronic acid, and at least one O-sulfotransferase (OST) enzyme and 3′-phosphoadenosine 5′-phosphosulfate (PAPS).