Abstract:
A method of fabricating a semiconductor device includes the following steps. At first, two gate stack layers are formed on a semiconductor substrate, and a material layer covering the gate stack layers is formed on the semiconductor substrate. Subsequently, a part of the material layer is removed to form a sacrificial layer between the gate stack layers, and a spacer at the opposite lateral sides of the gate stack layers. Furthermore, a patterned mask covering the gate stack layers and the spacer and exposing the sacrificial layer is formed, and the sacrificial layer is removed.
Abstract:
A method for fabricating SONOS memory is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a first silicon oxide layer, a silicon nitride layer, and a second silicon oxide layer on the surface of the semiconductor substrate; forming a hard mask on the second silicon oxide layer; patterning the hard mask, the second silicon oxide layer, the silicon nitride layer, and the first silicon oxide layer to form a patterned hard mask and a stacked structure; forming a gate oxide layer on surface of the patterned hard mask; removing the gate oxide layer and the patterned hard mask; forming a patterned polysilicon layer on surface of the stacked structure; and forming a source/drain region in the semiconductor substrate adjacent to two sides of the polysilicon layer.
Abstract:
A method for fabricating a semiconductor device is described. A stacked gate dielectric is formed over a substrate, including a first dielectric layer, a second dielectric layer and a third dielectric layer from bottom to top. A conductive layer is formed on the stacked gate dielectric and then patterned to form a gate conductor. The exposed portion of the third and the second dielectric layers are removed with a selective wet cleaning step. S/D extension regions are formed in the substrate with the gate conductor as a mask. A first spacer is formed on the sidewall of the gate conductor and a portion of the first dielectric layer exposed by the first spacer is removed. S/D regions are formed in the substrate at both sides of the first spacer. A metal silicide layer is formed on the S/D regions.
Abstract:
A method of fabricating a semiconductor device includes the following steps. At first, a semiconductor substrate is provided. A gate stack layer is formed on the semiconductor substrate, and the gate stack layer further includes a cap layer disposed thereon. Furthermore, two first spacers surrounding sidewalls of the gate stack layer is further formed. Subsequently, the cap layer is removed, and two second spacers are formed on a part of the gate stack layer. Afterwards, a part of the first spacers and the gate stack layer not overlapped with the two second spacers are removed to form two gate stack structures.
Abstract:
A method for fabricating a semiconductor device is described. A stacked gate dielectric is formed over a substrate, including a first dielectric layer, a second dielectric layer and a third dielectric layer from bottom to top. A conductive layer is formed on the stacked gate dielectric and then patterned to form a gate conductor. The exposed portion of the third and the second dielectric layers are removed with a selective wet cleaning step. S/D extension regions are formed in the substrate with the gate conductor as a mask. A first spacer is formed on the sidewall of the gate conductor and a portion of the first dielectric layer exposed by the first spacer is removed. S/D regions are formed in the substrate at both sides of the first spacer. A metal silicide layer is formed on the S/D regions.
Abstract:
A method of fabricating an isolation structure and the structure thereof is provided. The method is compatible with the embedded memory process and provides the isolation structure with a poly cap thereon to protect the top corners of the isolation structure, without using an extra photomask.
Abstract:
An exemplary method of etching an oxide layer and a nitride layer is provided. In particular, a substrate is provided. A surface of the substrate has an isolating structure projecting therefrom. A first oxide layer, a nitride layer and a second oxide layer are sequentially provided on the surface of the substrate, wherein the first oxide layer is uncovered on the isolating structure, the nitride layer is formed overlying the first oxide layer, and the second oxide layer is formed overlying the nitride layer. An isotropic etching process is performed by using an etching mask unmasking the isolating structure, and thereby removing the unmasked portion of the second oxide layer and the unmasked portion of the nitride layer and further exposing sidewalls of the isolating structure. The unmasked portion of the first oxide layer generally is partially removed due to over-etching.
Abstract:
An exemplary method of etching an oxide layer and a nitride layer is provided. In particular, a substrate is provided. A surface of the substrate has an isolating structure projecting therefrom. A first oxide layer, a nitride layer and a second oxide layer are sequentially provided on the surface of the substrate, wherein the first oxide layer is uncovered on the isolating structure, the nitride layer is formed overlying the first oxide layer, and the second oxide layer is formed overlying the nitride layer. An isotropic etching process is performed by using an etching mask unmasking the isolating structure, and thereby removing the unmasked portion of the second oxide layer and the unmasked portion of the nitride layer and further exposing sidewalls of the isolating structure. The unmasked portion of the first oxide layer generally is partially removed due to over-etching.
Abstract:
A method for fabricating SONOS memory is disclosed. The method includes the steps of: providing a semiconductor substrate; forming a first silicon oxide layer, a silicon nitride layer, and a second silicon oxide layer on the surface of the semiconductor substrate; forming a hard mask on the second silicon oxide layer; patterning the hard mask, the second silicon oxide layer, the silicon nitride layer, and the first silicon oxide layer to form a patterned hard mask and a stacked structure; forming a gate oxide layer on surface of the patterned hard mask; removing the gate oxide layer and the patterned hard mask; forming a patterned polysilicon layer on surface of the stacked structure; and forming a source/drain region in the semiconductor substrate adjacent to two sides of the polysilicon layer.
Abstract:
A non-volatile static random access memory (NVSRAM) device includes a volatile circuit and a non-volatile circuit. Under normal operations when an external power is supplied, the volatile circuit can provide fast data access. When the power supply is somehow interrupted, the non-volatile circuit can provide data backup using an inverter circuit and a non-volatile erasable programmable memory (NVEPM) circuit, thereby retaining data previously stored in the volatile circuit.