摘要:
A high transmittance brightness enhanced optical element for backlight modules and liquid crystal display device is disclosed. The brightness enhanced polarizing optical element comprises a reflective polarizer film, a phase retardation film, and a polarization enhancement film. The reflective polarizer film provides a function of selectively reflecting right-handness circularly polarized light or left-handness circularly polarized light and will transmit the other one of them. The one was selectively reflected will be recombined with the light source or the backlight and re-direct toward the reflective polarizer. The portions of the reflective light will be recombined with the fresh light from the light source as above and the processes repeatedly. As a result, almost all of the light transmit the reflective polarizer and in the same circular polarization. The light is then transmitted the phase retardation film and converted to a polarized light with another optical axis.
摘要:
A high transmittance brightness enhanced optical element for backlight modules and liquid crystal display device is disclosed. The brightness enhanced polarizing optical element comprises a reflective polarizer film, a phase retardation film, and a polarization enhancement film. The reflective polarizer film provides a function of selectively reflecting right-handness circularly polarized light or left-handness circularly polarized light and will transmit the other one of them. The one was selectively reflected will be recombined with the light source or the backlight and re-direct toward the reflective polarizer. The portions of the reflective light will be recombined with the fresh light from the light source as above and the processes repeatedly. As a result, almost all of the light transmit the reflective polarizer and in the same circular polarization. The light is then transmitted the phase retardation film and converted to a polarized light with another optical axis.
摘要:
A wire grid polarizer with double metal layers for the visible spectrum. Parallel dielectric layers having a period (p) of 10˜250 nm and a trench between adjacent dielectric layers overlie a transparent substrate. A first metal layer having a first thickness (d1) of 30˜150 nm is disposed in the trench. A second metal layer having a second thickness (d2) of 30˜150 nm and a width (w) overlies on the top surface of each dielectric layer. The first and second metal layers are separated by a vertical distance (l) of 10˜100 nm. The first thickness (d1) is the same as the second thickness (d2). A ratio of the width (w) to the period (p) is 25˜75%.
摘要:
The invention provides a surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same. The substrate includes: a substrate having a periodic nanostructure; a reflection layer formed on the substrate; a dielectric layer formed on the reflection layer; and a metal thin film layer formed on the dielectric layer.
摘要:
A package structure and a solar cell with the same are provided. The package structure includes a transparent package bulk and at least one structure capable of changing a direction of light. The structure is disposed within the transparent package bulk and at a distance from a surface of the transparent package bulk. When applied to a solar cell, the package structure can reduce gridline shading.
摘要:
The present disclosure provides a hybrid porous material including a porous material including a microporous polymer film or a non-woven fabric, wherein the porous material has an upper surface and a lower surface; and a continuous inorganic coating covering the upper surface, the lower surface, and surfaces of pores within the porous material. The present disclosure also provides a manufacturing method for the hybrid porous material and an energy storage device including the same.
摘要:
The invention provides a surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same. The substrate includes: a substrate having a periodic nanostructure; a reflection layer formed on the substrate; a dielectric layer formed on the reflection layer; and a metal thin film layer formed on the dielectric layer.
摘要:
The light-guide module for emitting particular polarized light beams includes a splitter for separating non-polarized light beams, a transformer for converting polarization of light beams, and a non-polarized light source. The non-polarized light source emits light beams. Particular polarized light beams pass the splitter and other light beams are reflected by the splitter. Polarizations of reflected light beams and of light beams emitted by the non-polarized light source are converted by the transformer so as to separate the light beams later. Thus the light-guide module for emitting particular polarized light beams loses relatively little light energy.
摘要:
An optical film and a light emitting device are provided. The optical film includes a substrate, a resin layer, and a plurality of porous particles. The resin layer is located on the substrate. The porous particles are distributed in the resin layer, and each of the porous particles includes a particle body and a plurality of holes. A refractive index of the particle body is different from a refractive index of the resin layer, and the refractive index of the particle body is different from a refractive index of air in the holes. The light emitting device includes a light emitting element and an optical film. The light emitting element has a light emitting surface, and the optical film is located on the light emitting surface of the light emitting element.
摘要:
An illumination device including a base, at least one LED light source and a first diffusing element is provided. The base has a supporting plane. The LED light source disposed on the supporting plane has a light emitting surface substantially parallel to the supporting plane. The first diffusing element disposed on the supporting plane is a hollow column surrounding the LED light source. An inner diameter width of the first diffusing element is gradually reduced outward from the base. The first diffusing element has a rough surface comprising a plurality of surface structures.