摘要:
A system and method employing photokinetic techniques in cell biology imaging applications are disclosed. Systems and methods of acquiring image data of an object may comprise: selectively inducing photoactivation of material at a site on the object; performing an optical axis integration scan; simultaneously executing a time delay integration scan sequence; and processing acquired image data in accordance with one or more desired analyses. Various methodologies and applications may include, inter alia, selective photobleaching of a site on the object, diffusion rate, velocity, and wave-front propagation analyses, multi-dimensional analyses of dispersion characteristics, biomolecular binding in cellular organelles, and photoactivation assisted systematic image segmentation for the study of cellular components.
摘要:
This disclosure is directed to optical microscope calibration devices that can be used with optical microscopes to adjust the microscope imaging parameters so that images of samples can be obtained below the diffraction limit. The microscope calibration devices include at least one calibration target. Each calibration target includes a number of features with dimensions below the diffraction limit of a microscope objective. Separate color component diffraction limited images of one of the calibration targets are obtained for a particular magnification. The color component images can be combined and image processed to obtain a focused and non-distorted image of the calibration target. The parameters used to obtain the focused and non-distorted image of the calibration target can be used to obtain focused and non-distorted images of a sample for the same magnification by using the same parameters.
摘要:
Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
摘要:
This disclosure is directed to optical microscope calibration devices that can be used with optical microscopes to adjust the microscope imaging parameters so that images of samples can be obtained below the diffraction limit. The microscope calibration devices include at least one calibration target. Each calibration target includes a number of features with dimensions below the diffraction limit of a microscope objective. Separate color component diffraction limited images of one of the calibration targets are obtained for a particular magnification. The color component images can be combined and image processed to obtain a focused and non-distorted image of the calibration target. The parameters used to obtain the focused and non-distorted image of the calibration target can be used to obtain focused and non-distorted images of a sample for the same magnification by using the same parameters.
摘要:
Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
摘要:
Methods and apparatus are described for delivering index-matching immersion liquid in high numerical-aperture optical microscopy and lithography. An array of immersion liquid droplets is delivered to a specimen substrate or specimen substrate cover by an immersion liquid printing apparatus. An immersion liquid reservoir provides immersion liquid to the printer by a precision pump. The printer delivers immersion liquid to the substrate or substrate cover in arrays of immersion liquid droplets of defined volumes and array patterns. The volumes and patterns of array droplets delivered to the substrate or substrate cover are optimized to maintain adequate immersion liquid between the substrate or substrate cover and an immersion objective while avoiding the formation of air bubbles in the immersion liquid and the accumulation of excess volumes of immersion liquid.
摘要:
An image acquisition system and method employing multi-axis integration (MAI) may incorporate both optical axis integration (OAI) and time-delay integration (TDI) techniques. Disclosed MAI systems and methods may integrate image data in the z direction as the data are acquired, projecting the image data prior to deconvolution. Lateral translation of the image plane during the scan in the z direction may allow large areas to be imaged in a single scan sequence.
摘要:
Embodiments of the present invention are directed to imaging technologies, and, in particular, to an imaging system that detects relatively weak signals, over time, and that uses the detected signals to determine the positions of signal emitters. Particular embodiments of the present invention are directed to methods and systems for imaging fluorophore-labeled samples in order to produce images of the sample at resolutions significantly greater than the diffraction-limited resolution associated with optical microscopy. Embodiments of the present invention employ overlapping-emitter-image disambiguation to allow data to be collected from densely arranged emitters, which significantly decreases the data-collection time for producing intermediate images as well as the number of intermediate images needed to computationally construct high-resolution final images. Additional embodiments of the present invention employ hierarchical image-processing techniques to further resolve and interpret disambiguated images.
摘要:
A system and method employing photokinetic techniques in cell biology imaging applications are disclosed. Systems and methods of acquiring image data of an object may comprise: selectively inducing photoactivation of material at a site on the object; performing an optical axis integration scan; simultaneously executing a time delay integration scan sequence; and processing acquired image data in accordance with one or more desired analyses. Various methodologies and applications may include, inter alia, selective photobleaching of a site on the object, diffusion rate, velocity, and wave-front propagation analyses, multi-dimensional analyses of dispersion characteristics, biomolecular binding in cellular organelles, and photoactivation assisted systematic image segmentation for the study of cellular components.
摘要:
Expression profiling using DNA microarrays is an important new method for analyzing cellular physiology. In “spotted” microarrays, fluorescently labeled cDNA from experimental and control cells is hybridized to arrayed target DNA and the arrays imaged at two or more wavelengths. Statistical analysis is performed on microarray images and show that non-additive background, high intensity fluctuations across spots, and fabrication artifacts interfere with the accurate determination of intensity information. The probability density distributions generated by pixel-by-pixel analysis of images can be used to measure the precision with which spot intensities are determined. Simple weighting schemes based on these probability distributions are effective in improving significantly the quality of microarray data as it accumulates in a multi-experiment database. Error estimates from image-based metrics should be one component in an explicitly probabilistic scheme for the analysis of DNA microarray data.