摘要:
An apparatus for purging a space in a processing chamber comprises a source of a purge gas; an inlet portion of a purge ring; an inlet baffle located in the inlet portion and fluidically connected to the source of purge gas; and an exhaust portion of the purge ring. The inlet portion and the exhaust portion define a ring hole space having a 360° periphery. The inlet baffle preferably surrounds not less than 180° of said periphery. The inlet baffle is operable to convey purge gas into the ring hole space. The exhaust portion is operable to convey purge gas and other matter out of the ring hole space. Cleaning of the purge ring and other structures in a processing chamber is conducted by flowing a cleaning gas through the inlet baffle. Some embodiments include a gas inlet plenum and an exhaust channel but not a purge ring.
摘要:
A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
摘要:
A method and apparatus for atomic layer deposition (ALD) is described. The apparatus comprises a deposition chamber and a wafer support. The deposition chamber is divided into two or more deposition regions that are integrally connected one to another. The wafer support is movable between the two or more interconnected deposition regions within the deposition chamber.
摘要:
An apparatus for processing a substrate is provided. The apparatus includes a process chamber, and a dual-mode gas distribution plate disposed within the process chamber. The dual-mode gas distribution plate comprises a first gas distribution zone disposed in a center of the gas distribution plate, and a second gas distribution zone surrounding the first gas distribution zone, the second gas distribution zone being fluidly isolated from the first gas distribution zone, wherein the first gas distribution zone is coupled to a valve system to deliver sequential pulses of a first gas to the first gas distribution zone to perform a cyclical deposition process, and the second gas distribution zone is in communication with a flow controller to deliver a second gas to perform a chemical vapor deposition process.
摘要:
A method of forming a material on a substrate is disclosed. In one embodiment, the method includes forming a tantalum nitride layer on a substrate disposed in a plasma process chamber by sequentially exposing the substrate to a tantalum precursor and a nitrogen precursor, followed by reducing a nitrogen concentration of the tantalum nitride layer by exposing the substrate to a plasma annealing process. A metal-containing layer is subsequently deposited on the tantalum nitride layer.
摘要:
In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer. In one example, the barrier layer contains titanium nitride, the first and second soak processes independently comprise at least one reducing gas selected from the group consisting of hydrogen, silane, disilane, dichlorosilane, borane, diborane, derivatives thereof and combinations thereof and the nucleation layer may be deposited by an atomic layer deposition process or a pulsed chemical vapor deposition process while the bulk layer may be deposited by a chemical vapor deposition process or a physical vapor deposition process.
摘要:
In one embodiment of the invention, a method for forming a tungsten-containing layer on a substrate is provided which includes positioning a substrate containing a barrier layer disposed thereon in a process chamber, exposing the substrate to a first soak process for a first time period and depositing a nucleation layer on the barrier layer by flowing a tungsten-containing precursor and a reductant into the process chamber. The method further includes exposing the nucleation layer to a second soak process for a second time period and depositing a bulk layer on the nucleation layer. In one example, the barrier layer contains titanium nitride, the first and second soak processes independently comprise at least one reducing gas selected from the group consisting of hydrogen, silane, disilane, dichlorosilane, borane, diborane, derivatives thereof and combinations thereof and the nucleation layer may be deposited by an atomic layer deposition process or a pulsed chemical vapor deposition process while the bulk layer may be deposited by a chemical vapor deposition process or a physical vapor deposition process.
摘要:
A valve control system for a semiconductor processing chamber includes a system control computer and a plurality of electrically controlled valves associated with the processing chamber. The system further includes a programmable logic controller in communication with the system control computer and operatively coupled to the electrically controlled valves. The refresh time for control of the valves may be less than 10 milliseconds. Consequently, valve control operations do not significantly extend the period of time required for highly repetitive cycling in atomic layer deposition processes. A hardware interlock may be implemented through the output power supply of the programmable logic controller.
摘要:
In one embodiment, a method for forming a metal-containing material on a substrate is provided which includes forming a metal containing barrier layer on a substrate by a plasma-enhanced cyclical vapor deposition process, exposing the substrate to a soak process, and depositing a conductive material on the substrate by a second vapor deposition process. The substrate may be exposed to a silicon-containing compound (e.g., silane) during the soak process. In some examples, a metallic nitride layer may be deposited subsequent to the soak process and prior to the second vapor deposition process. In other examples, the metal containing barrier layer contains metallic titanium, the metallic nitride layer contains titanium nitride, and the conductive material contains tungsten or copper. The plasma-enhanced cyclical vapor deposition process may further include exposing the substrate to a nitrogen precursor, such as nitrogen, hydrogen, a nitrogen/hydrogen mixture, ammonia, hydrazine, or derivatives thereof.
摘要:
In one embodiment, a method for forming a tungsten-containing material on a substrate is provided which includes forming a tungsten nucleation layer by sequentially exposing a substrate to a boron-containing gas and a tungsten-containing gas within a processing chamber during an atomic layer deposition process, and forming a tungsten bulk layer on the tungsten nucleation layer by exposing the substrate to a processing gas that contains the tungsten-containing gas and a reactive precursor gas within another processing chamber during a chemical vapor deposition process. In one example, the tungsten nucleation layer is deposited on a dielectric material, such as silicon oxide. In another example, the tungsten nucleation layer is deposited on a barrier material, such as titanium or titanium nitride. Other examples provide that the tungsten nucleation layer and the tungsten bulk layer are deposited in the same processing chamber.