Abstract:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
Abstract:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
Abstract:
A data transmission interconnect assembly (e.g., a router) capable of transmission speeds in excess of 40 Gbps in which a line-card is detachably coupled to a backplane using flexible flat cables that are bent to provide a continuous, smooth curve between the connected boards, and connected by a connection apparatus that employs cable-to-cable interface members that are transparent to the transmitted signal waves. Microspring contact structures are formed on the cables, or on a contact structure pressed against the cables, to provide interface arrangements that are smaller than a wavelength of the transmitted signal. A connector apparatus uses a cam mechanism to align the cables, and then to press a contact structure, having micro spring interface members formed thereon, against the cables. An alterative contact structure uses anisotropic conductive film.
Abstract:
Provided is a micro-electromechanical assembly including an out-of-plane device formed on a device layer of a single crystal silicon substrate. A ribbon structure is formed on the device layer, where the ribbon structure has at least one of a width or depth, which is less than the width or depth of the out-of-plane device. A connection interface provides a connection point between a first end of the out-of-plane device and a first end of a ribbon structure, wherein the ribbon structure and out-of-plane device are integrated as a single piece.
Abstract:
An optical cross switch including an improved system to align optical components is described. The system utilizes a highly transmissive sensor positioned in the optical path of an optical signal to determine the precise position of the optical signal. A feedback loop uses output from the highly transmissive sensor to readjust elements that maintains the optical signal in a desired position. The current system is particularly suitable for use in an optical cross switch.
Abstract:
A system to align optical components is described. The system utilizes a highly transmissive sensor positioned in the optical path of an optical signal to determine the precise position of the optical signal. A feedback loop uses output from the highly transmissive sensor to readjust elements that maintains the optical signal in a desired position. The current system is particularly suitable for use in an optical cross switch.
Abstract:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
Abstract:
Fluidic conduits, which can be used in microarraying systems, dip pen nanolithography systems, fluidic circuits, and microfluidic systems, are disclosed that use channel spring probes that include at least one capillary channel. Formed from spring beams (e.g., stressy metal beams) that curve away from the substrate when released, channels can either be integrated into the spring beams or formed on the spring beams. Capillary forces produced by the narrow channels allow liquid to be gathered, held, and dispensed by the channel spring probes. Because the channel spring beams can be produced using conventional semiconductor processes, significant design flexibility and cost efficiencies can be achieved.
Abstract:
A MEMS system including a fixed electrode and a suspended moveable electrode that is controllable over a wide range of motion. In traditional systems where an fixed electrode is positioned under the moveable electrode, the range of motion is limited because the support structure supporting the moveable electrode becomes unstable when the moveable electrode moves too close to the fixed electrode. By repositioning the fixed electrode from being directly underneath the moving electrode, a much wider range of controllable motion is achievable. Wide ranges of controllable motion are particularly important in optical switching applications.
Abstract:
Wafer scale fabrication of three dimentional substantially enclosed structures on a MEMS/IC die use a combination of electrodeposition of structural and sacrificial layers and flip-chip alignment and bonding technology. A first wafer contains a die with MEMS and/or IC structures. On this MEMS/IC processed die, a first three dimensional structural component is formed using standard lithographic processes and electrodeposition of a structural layer. A second sacrificial wafer is separately processed using similar lithographic and electrodeposition processes to form a corresponding second three dimensional structural component. The wafers are placed in a flip-chip bonder and aligned. Once aligned, the structural components are bonded together. The bonded wafers are then removed from the bonder and the second sacrificial wafer substrate removed. The resultant die includes a three dimensional structural component with a substantially enclosed cavity as well as MEMS and IC elements.