摘要:
Systems and methods to improve performance in a graphics processing unit are described herein. Embodiments achieve power saving in a graphics processing unit by dynamically activating/deactivating individual SIMDs in a shader complex that comprises multiple SIMD units. On-the-fly dynamic disabling and enabling of individual SIMDs provides flexibility in achieving a required performance and power level for a given processing application. Embodiments of the invention also achieve dynamic medium grain clock gating of SIMDs in a shader complex. Embodiments reduce switching power by shutting down clock trees to unused logic by providing a clock on demand mechanism. In this way, embodiments enhance clock gating to save more switching power for the duration of time when SIMDs are idle (or assigned no work). Embodiments can also save leakage power by power gating SIMDs for a duration when SIMDs are idle for an extended period of time.
摘要:
A Scalable and Unified Compute System performs scalable, repairable general purpose and graphics shading operations, memory load/store operations and texture filtering. A Scalable and Unified Compute. Unit Module comprises a shader pipe array, a texture mapping unit, and a level one texture cache system. It accepts ALU instructions, input/output instructions, and texture or memory requests for a specified set of pixels, vertices, primitives, surfaces, or general compute work items from a shader program and performs associated operations to compute the programmed output data. The texture mapping unit accepts source data addresses and instruction constants in order to fetch, format, and perform instructed filtering interpolations to generate formatted results based on the specific corresponding data stored in a level one texture cache system. The texture mapping unit consists of an address generating system, a pre-formatter module, interpolator module, accumulator module and a format module.
摘要:
A method, computer program product, and system are provided for controlling a clock distribution network. For example, an embodiment of the method can include programming a predetermined delay time into a plurality of processing elements and controlling an activation and de-activation of these processing elements in a sequence based on the predetermined delay time. The processing elements are located in a system incorporating the clock distribution network, where the predetermined delay time can be programmed in a control register of a clock gate control circuit residing in the processing element. Further, when controlling the activation and de-activation of the processing elements, this activity can be controlled with a state machine based on the system's mode of operation. In controlling the activation and de-activation of the processing elements, the method described above can not only control the effects of di/dt in the system but also shut off clock signals in the clock distribution network when idle, thus reducing dynamic power consumption.
摘要:
Disclosed herein is a processing unit configured to process video data, and applications thereof. In an embodiment, the processing unit includes a buffer and an execution unit. The buffer is configured to store a data word, wherein the data word comprises a plurality of bytes of video data. The execution unit is configured to execute a single instruction to (i) shift bytes of video data contained in the data word to align a desired byte of video data and (ii) process the desired byte of the video data to provide processed video data.
摘要:
Systems and methods for multi-precision computation are disclosed. One embodiment of the present invention includes a plurality of multiply-add units (MADDs) configured to perform one or more single precision operations and an arrangement generator to generate one or more mantissa arrangements using a plurality of double precision numbers. Each MADD is configured to receive and load said mantissa arrangements from the arrangement generator. The MADDs compute a result of a multi-precision computation using the mantissa arrangements. In an embodiment, the MADDs are configured to simultaneously perform operations that include, single precision operations, double-precision additions and double-precision multiply and additions.
摘要:
A shader pipe texture filter utilizes a level one cache system as a primary method of storage but with the ability to have the level one cache system read and write to a level two cache system when necessary. The level one cache system communicates with the level two cache system via a wide channel memory bus. In addition, the level one cache system can be configured to support dual shader pipe texture filters while maintaining access to the level two cache system. A method utilizing a level one cache system as a primary method of storage with the ability to have the level one cache system read and write a level two cache system when necessary is also presented. In addition, level one cache systems can allocate a defined area of memory to be sharable amongst other resources.
摘要:
Each row of a row based shader engine comprises a shader pipe array, a texture filter, and a level one texture cache system. The shader pipe array accepts texture requests for a specified pixel from a resource and performs associated rendering calculations, outputting texel data. The texture mapping unit receives texel data from a level one cache system and through formatting and bilinear filtering interpolations, generates a formatted bilinear result based on a specific pixel's corresponding four texels. Utilizing multiple rows of a row based shader engine within the shader engine allows for the parallel processing of multiple simultaneous resource requests. A method for texture filtering utilizing a row based shader engine is also presented.
摘要:
A method, computer program product, and system are provided for controlling a clock distribution network. For example, an embodiment of the method can include programming a predetermined delay time into a plurality of processing elements and controlling an activation and de-activation of these processing elements in a sequence based on the predetermined delay time. The processing elements are located in a system incorporating the clock distribution network, where the predetermined delay time can be programmed in a control register of a clock gate control circuit residing in the processing element. Further, when controlling the activation and de-activation of the processing elements, this activity can be controlled with a state machine based on the system's mode of operation. In controlling the activation and de-activation of the processing elements, the method described above can not only control the effects of di/dt in the system but also shut off clock signals in the clock distribution network when idle, thus reducing dynamic power consumption.
摘要:
The occurrence of an (n+m) input operand instruction that requires more than n of its input operands from an n-output data source is recognized by a programmable vertex shader (PVS) controller. In turn, the PVS controller provides at least two substitute instructions, neither of which requires more than n operands from the n output data source, to a PVS engine. A first of the substitute instructions is executed by the PVS engine to provide an intermediate result that is temporarily stored and used as an input to another of the at least two substitute instructions. In this manner, the present invention avoids the expense of additional or significantly modified memory. In one embodiment of the present invention, a pre-accumulator register internal to the PVS engine is used to store the intermediate result. In this manner, the present invention provides a relatively inexpensive solution for a relatively infrequent occurrence.
摘要:
A graphics processing unit is disclosed, the graphics processing unit having a processor having one or more SIMD processing units, and a local data share corresponding to one of the one or more SIMD processing units, the local data share comprising one or more low latency accessible memory regions for each group of threads assigned to one or more execution wavefronts, and a global data share comprising one or more low latency memory regions for each group of threads.