Abstract:
This invention relates to catalyst compositions, methods, and polymers encompassing at least one Group 4 metallocene compound comprising bridging η5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with low levels of long chain branching.
Abstract:
This invention relates to catalyst compositions, methods, and polymers encompassing at least one first Group 4 metallocene compound comprising bridging η5-cyclopentadienyl-type ligands, in combination with at least one second Group 4 metallocene with non-bridging η5-cyclopentadienyl-type ligands, typically in combination with at least one cocatalyst, and at least one activator. The compositions and methods disclosed herein provide ethylene polymers with a bimodal molecular weight distribution.
Abstract:
A multimodal polyethylene composition having at least two polyethylene components, wherein each component has a molecular weight distribution of equal to or less than about 5, one component has a higher molecular weight than the other component, and the higher molecular weight component has an “a” parameter value of equal to or greater than about 0.35 when fitted to the Carreau-Yasuda equation with n=0.
Abstract:
This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a supported catalyst composition. In one aspect, the present invention encompasses a catalyst composition comprising the contact product of at least one metallocene compound, at least one organochromium compound, at least one chemically-treated solid oxide, and at least one organoaluminum compound.
Abstract:
This invention relates to the field of olefin polymerization catalyst compositions, and methods for the polymerization and copolymerization of olefins, including polymerization methods using a catalyst composition. One aspect of this invention is the formation and use of a catalyst composition comprising a transition metal compound and an activator for olefin polymerization processes.
Abstract:
Catalyst compositions comprising a first metallocene compound, a second metallocene compound, an activator-support, and an organoaluminum compound are provided. Methods for preparing and using such catalysts to produce polyolefins are also provided. The compositions and methods disclosed herein provide ethylene polymers having a HLMI of from about 0.5 to about 25, a polymer density of from about 0.920 to about 0.965, and a polydispersity of from about 3.0 to about 30.
Abstract:
Fluorenyl-containing metallocenes are disclosed along with methods for making the metallocenes. Also disclosed are methods for using the metallocenes as polymerization catalysts. In addition, polymers resulting from such polymerizations are disclosed.
Abstract:
The present invention is directed to PE-100 ethylene copolymers and pipe made thereof having a Tabor abrasion between about 0.01 and about 0.001 grams lost/1000 revolutions. These copolymers are formed by contacting ethylene with at least one mono-1-olefin comonomer having from 2 to about 10 carbon atoms per molecule in a reaction zone under polymerization conditions in the presence of a hydrocarbon diluent, a catalyst system, and a cocatalyst. Additionally, the comonomers may be selected from mono-1-olefins having 4 to 10 carbon atoms, such as, 1-hexene, 1-butene, 4-methyl-1-pentene, 1-octene, and 1-decene. Further, these ethylene copolymers may be employed to produce PE-100 pipe having both small diameters and diameters in excess of 42 inches substantially without sagging or other gravitational deformation. Copolymers of ethylene and 1-hexene are disclosed which are used to produce PE-100 pipe.
Abstract:
This invention relates to catalyst compositions, methods, and polymers encompassing a Group 4 metallocene with bridging θ5-cyclopentadienyl-type ligands, in combination with a cocatalyst and an activator-support. The compositions and methods disclosed herein provide ethylene polymers with low levels of long chain branching.
Abstract:
A catalyst system composition comprising a chromium compound supported on a silica-titania support, wherein said catalyst system has been reduced with carbon monoxide, and a cocatalyst selected from the group consisting of i) alkyl lithium compounds, ii) dialkyl aluminum alkoxides in combination with at least one metal alkyl selected from the group consisting of alkyl zinc compounds, alkyl aluminum compounds, alkyl boron compounds, and mixtures thereof and iii) mixtures thereof can be used to polymerize olefins to produce a low density polymer with a decreased melt index and/or high load melt index. This catalyst system also can be used with a Ziegler-Natta catalyst system to polymerize olefins. Polymerization processes using these catalyst system compositions are also provided. Polymers resulting from polymerization processes using the inventive catalyst and cocatalyst systems have a decreased high load melt index, decreased melt index, increased fluff bulk density, and are useful as components to make bi-modal molecular weight resins for film and/or blow molding applications.