Abstract:
Novel compounds generally referred to herein as cationic oligomeric phenylene ethynylenes (OPEs), methods of synthesizing OPEs and various uses for the OPEs are described. The compounds can be synthesized in both symmetrical (S-OPE) and non-symmetrical (N-OPE) forms. Suitable uses include sensor and biocidal applications. Reusable structures incorporating the OPEs that are able to capture and release biological species of interest are also described.
Abstract:
Methods for forming an apparatus containing a nanofluidic device with a pattern having nanoscopic features includes producing a regular interference pattern in a substrate using two coherent light beams. In an embodiment, an apparatus includes a nanofluidic device having nanoscopic features in at least two dimensions. In an embodiment, a nanofludic device having nanoscopic features is formed using an ultraviolet source to generate a regular interference pattern.
Abstract:
A method for separation of mixtures in fluidic systems through electrokinetic transport by use of nanochannels when the fluidic systems approach the size of an electrical double layer, thereby allowing separation based on charge. The disclosed apparatus comprises a T-chip with a nanochannel section. The method and apparatus are useful for separation of many molecular species, including peptides, proteins, and DNA.
Abstract:
The present subject matter relates generally to design, synthesis, and characterization of materials with well-defined porous networks of molecular dimensions in which the size and surface energy of the pores can be externally and reversibly controlled to dynamically modulate the adsorption and transport of molecular species.
Abstract:
A surface grafted conjugated polyelectrolyte (CPE) is formed by coupling a CPE by a coupling moiety to the surface of a substrate. The substrate can be of any shape and size, and for many uses of the surface grafted CPE, it is advantageous that the substrate is a nanoparticle or microparticle. Surface grafted CPEs are presented that use silica particles as the substrate, where a modified silane coupling agent connects the surface to the CPE by a series of covalent bonds. Two methods of preparing the surface grafted CPEs are presented. One method involves the inclusion of the surface being modified by the coupling agent and condensed with monomers that form the CPE in a grafted state to the substrate. A second method involves the formation of a CPE with terminal groups that are complimentary to functionality that has been placed on the surface of the substrate by reaction with a coupling agent. The surface grafted CPEs are also described for use as biosensors and biocides.
Abstract:
A surface grafted conjugated polyelectrolyte (CPE) is formed by coupling a CPE by a coupling moiety to the surface of a substrate. The substrate can be of any shape and size, and for many uses of the surface grafted CPE, it is advantageous that the substrate is a nanoparticle or microparticle. Surface grafted CPEs are presented that use silica particles as the substrate, where a modified silane coupling agent connects the surface to the CPE by a series of covalent bonds. Two methods of preparing the surface grafted CPEs are presented. One method involves the inclusion of the surface being modified by the coupling agent and condensed with monomers that form the CPE in a grafted state to the substrate. A second method involves the formation of a CPE with terminal groups that are complimentary to functionality that has been placed on the surface of the substrate by reaction with a coupling agent. The surface grafted CPEs are also described for use as biosensors and biocides.
Abstract:
Device and method for detecting the presence of known or unknown toxic agents in a fluid sample. Targets in the sample are bound to releasable receptors immobilized in a reaction region of a micro- or nano-fluidic device. The receptors are selected based on their affinity for classes of known toxic agents. The receptors are freed and the bound and unbound receptors separated based on differential electrokinetic mobilities while they travel to a detection device.
Abstract:
Novel compounds generally referred to herein as cationic oligomeric phenylene ethynylenes (OPEs), methods of synthesizing OPEs and various uses for the OPEs are described. The compounds can be synthesized in both symmetrical (S-OPE) and non-symmetrical (N-OPE) forms. Suitable uses include sensor and biocidal applications. Reusable structures incorporating the OPEs that are able to capture and release biological species of interest are also described.
Abstract:
Device and method for detecting the presence of known or unknown toxic agents in a fluid sample. Targets in the sample are bound to releasable receptors immobilized in a reaction region of a micro- or nano-fluidic device. The receptors are selected based on their affinity for classes of known toxic agents. The receptors are freed and the bound and unbound receptors separated based on differential electrokinetic mobilities while they travel to a detection device.
Abstract:
Device and method for detecting the presence of known or unknown toxic agents in a fluid sample. Targets in the sample are bound to releasable receptors immobilized in a reaction region of a micro- or nano-fluidic device. The receptors are selected based on their affinity for classes of known toxic agents. The receptors are freed and the bound and unbound receptors separated based on differential electrokinetic mobilities while they travel to a detection device.