摘要:
One inventive aspect is related to a method of minimizing the final thickness of an interfacial oxide layer between a semiconductor material and a high dielectric constant material. The method comprises depositing a covering layer on the high dielectric constant material. The method further comprises removing adsorbed/absorbed water from the high dielectric constant material prior to depositing the covering layer. The removal of adsorbed/absorbed water is preferably done by a degas treatment. The covering layer may be a gate electrode or a spacer dielectric.
摘要:
A diffusion barrier (and method for forming the diffusion barrier) for a field-effect transistor having a channel region and a gate electrode, includes an insulating material being disposed over the channel region. The insulating material includes nitrogen (N), and is disposed under the gate electrode. The insulating material can be provided either as a layer or distributed within a gate dielectric material disposed under the gate electrode.
摘要:
A structure (e.g., field effect transistor) and a method for making the structure, include a substrate having a source region, a drain region, and a channel region therebetween, an insulating layer disposed over the channel region, the insulating layer including a layer including aluminum nitride disposed over the channel region, and a gate electrode disposed over the insulating layer.
摘要:
A method for manufacturing a dual work function device is disclosed. In one aspect, the process includes a first and second region in a substrate. The method includes forming a first transistor in the first region which has a first work function. Subsequently, a second transistor is formed in the second region having a different work function. The process of forming the first transistor includes providing a first gate dielectric stack having a first gate dielectric layer and a first gate dielectric capping layer on the first gate dielectric layer, performing a thermal treatment to modify the first gate dielectric stack, the modified first gate dielectric stack defining the first work function, providing a first metal gate electrode layer on the modified first gate dielectric stack, and patterning the first metal gate electrode layer and the modified first gate dielectric stack.
摘要:
A semiconductor device is disclosed. The device comprises a first MOSFET transistor. The transistor comprises a substrate, a first high-k dielectric layer upon the substrate, a first dielectric capping layer upon the first high-k dielectric, and a first gate electrode made of a semiconductor material of a first doping level and a first conductivity type upon the first dielectric capping layer. The first dielectric capping layer comprises Scandium.
摘要:
A diffusion barrier (and method for forming the diffusion barrier) for a field-effect transistor having a channel region and a gate electrode, includes an insulating material being disposed over the channel region. The insulating material includes nitrogen (N), and is disposed under the gate electrode. The insulating material can be provided either as a layer or distributed within a gate dielectric material disposed under the gate electrode.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
A method (and resultant structure) of forming a semiconductor structure, includes forming a mixed rare earth oxide on silicon. The mixed rare earth oxide is lattice-matched to silicon.
摘要:
The invention is related to an ALD method for depositing a layer including the steps of a) providing a semiconductor substrate in a reactor; b) providing a pulse of a first precursor gas into the reactor; c) providing a pulse of a second precursor gas into the reactor; d) providing an inert atmosphere in the reactor; and e) repeating step b) through step d), wherein at least once during step d) the semiconductor substrate is exposed to UV irradiation.