摘要:
An electronic device may include a substrate and a plurality of conductive electrodes on the substrate. Each of the conductive electrodes may have a respective electrode wall extending away from the substrate, and an electrode wall of at least one of the conductive electrodes may include a recessed portion. In addition, an insulating layer may be provided on the electrode wall, and portions of the electrode wall may be free of the insulating layer between the substrate and the insulating layer.
摘要:
A class changing apparatus includes a link unit configured to be linked with a client device to transmit and receive data. The class change apparatus also includes a storage unit configured to store apparatus information including class information of the client device. The class changing apparatus further includes a control unit coupled to the link unit and the storage unit and controlling operations of the class changing apparatus including a class changing operation, wherein the class change operation includes transmitting at least one command including a command for rebranching into the selected class to the client device through the link unit and registering class information as changed class information in the storage unit in response to detecting a class change request.
摘要:
An electronic device may include a substrate and a plurality of conductive electrodes on the substrate. Each of the conductive electrodes may have a respective electrode wall extending away from the substrate, and an electrode wall of at least one of the conductive electrodes may include a recessed portion. In addition, an insulating layer may be provided on the electrode wall, and portions of the electrode wall may be free of the insulating layer between the substrate and the insulating layer.
摘要:
An electronic device may include a substrate, a conductive layer on the substrate, and an insulating spacer. The conductive electrode may have an electrode wall extending away from the substrate. The insulating spacer may be provided on the electrode wall with portions of the electrode wall being free of the insulating spacer between the substrate and the insulating spacer. Related methods and structures are also discussed.
摘要:
In a method of processing a semiconductor structure and a method of forming a capacitor for a semiconductor device using the same, a semiconductor structure may be cleaned using a cleaning solution having a surface tension lower than that of water. The semiconductor structure may be dried in an isopropyl alcohol vapor atmosphere.
摘要:
An electronic device may include a substrate, a conductive layer on the substrate, and an insulating spacer. The conductive electrode may have an electrode wall extending away from the substrate. The insulating spacer may be provided on the electrode wall with portions of the electrode wall being free of the insulating spacer between the substrate and the insulating spacer. Related methods and structures are also discussed.
摘要:
A semiconductor device includes a semiconductor substrate having a top surface and a recessed portion including at least two oblique side surfaces and a first bottom surface therebetween, a gate insulating layer formed on the recessed portion, a gate electrode formed on the gate insulating layer, a channel region below the gate electrode in the semiconductor substrate, and gate spacers formed on side surfaces of the gate electrode, wherein both the bottom surface and the side surfaces of the recessed portion include flat surfaces. A method of manufacturing a semiconductor device comprising the steps of forming a recess portion including at least two oblique side surfaces and a bottom surface therebetween in a semiconductor substrate, forming a gate insulating layer formed on the recessed portion, forming a gate electrode formed on the gate insulating layer, forming a channel region below the gate electrode in the semiconductor substrate, and forming gate spacers formed on side surfaces of the gate electrode.
摘要:
A semiconductor device and a method thereof are disclosed. In the example method, a mold layer having an opening may be formed on a substrate. A conductive etchable pattern (e.g., a preliminary conductive pattern, a lower electrode pattern, etc.) may be formed within the opening. The mold layer may be reduced so as to expose a portion of the conductive etchable pattern and less than all of the exposed portion of the conductive etchable pattern may be etched such that the etched conductive etchable pattern has a reduced thickness. The example semiconductor device may include the etched conductive etchable pattern as above-described with respect to the example method.
摘要:
A corrosion-inhibiting cleaning composition for semiconductor wafer processing includes hydrogen peroxide at a concentration in a range from about 0.5 wt % to about 5 wt %, sulfuric acid at a concentration in a range from about 1 wt % to about 10 wt %, hydrogen fluoride at a concentration in a range from about 0.01 wt % to about 1 wt %; an azole at a concentration in a range from about 0.1 wt % to about 5 wt % and deionized water. The azole operates to inhibit corrosion of a metal layer being cleaned by chelating with a surface of the metal layer during a cleaning process.
摘要:
In a cleaning solution and a method of cleaning a semiconductor substrate, the cleaning solution includes about 1 to about 10 percent by weight of sulfuric acid, about 0.5 to about 5 percent by weight of aqueous hydrogen peroxide solution, and about 85 to about 98.5 percent by weight of hydrogen fluoric acid solution. Various polymers attached to a metal wiring formed on a substrate are removed by immersing the substrate into the cleaning solution. The substrate is rinsed to remove the cleaning solution remaining on the substrate. Thus, the polymers can be completely removed without damage to the metal wiring and an underlying oxide film.