摘要:
According to an example embodiment of the present invention, the microelectronic cleaning agent may include a fluoride component, an acid component, a chelating agent, a surfactant and water. Example embodiments of the present invention provide a microelectronic cleaning agent which can selectively remove, for example, a high-k dielectric layer. The microelectronic cleaning agent includes from about 0.001 weight % to about 10 weight % of a fluoride component, from about 0.001 weight % to about 30 weight % of an acid component, from about 0.001 weight % to about 20 weight % of a chelating agent, from about 0.001 weight % to about 10 weight % of a surfactant, and water (H2O). The water may comprise the remainder of the cleaning agent. According to another embodiment of the present invention, a method of fabricating a semiconductor device using the microelectronic cleaning agent is also provided.
摘要翻译:根据本发明的示例性实施方案,微电子清洗剂可以包括氟化物组分,酸组分,螯合剂,表面活性剂和水。 本发明的示例性实施方案提供了可以选择性地除去例如高k电介质层的微电子清洁剂。 微电子清洁剂包括约0.001重量%至约10重量%的氟化物组分,约0.001重量%至约30重量%的酸组分,约0.001重量%至约20重量%的螯合剂, 约0.001重量%至约10重量%的表面活性剂和水(H 2 O 2)。 水可以包括剩余的清洁剂。 根据本发明的另一实施例,还提供了使用微电子清洁剂制造半导体器件的方法。
摘要:
An etchant composition that allows simplification and optimization of semiconductor manufacturing process is presented, along with a method of patterning a conductive layer using the etchant and a method of manufacturing a flat panel display using the etchant. The etchant includes nitric acid, phosphoric acid, acetic acid, and an acetate compound in addition to water.
摘要:
An etchant composition that allows simplification and optimization of semiconductor manufacturing process is presented, along with a method of patterning a conductive layer using the etchant and a method of manufacturing a flat panel display using the etchant. The etchant includes nitric acid, phosphoric acid, acetic acid, and an acetate compound in addition to water.
摘要:
In one aspect, a composition is provided which is capable of removing an insulation material which includes at least one of a low-k material and a passivation material. The composition of this aspect includes about 5 to about 40 percent by weight of a fluorine compound, about 0.01 to about 20 percent by weight of a first oxidizing agent, about 10 to about 50 percent by weight of a second oxidizing agent, and a remaining water.
摘要:
A corrosion-inhibiting cleaning composition for semiconductor wafer processing includes hydrogen peroxide at a concentration in a range from about 0.5 wt % to about 5 wt %, sulfuric acid at a concentration in a range from about 1 wt % to about 10 wt %, hydrogen fluoride at a concentration in a range from about 0.01 wt % to about 1 wt %; an azole at a concentration in a range from about 0.1 wt % to about 5 wt % and deionized water. The azole operates to inhibit corrosion of a metal layer being cleaned by chelating with a surface of the metal layer during a cleaning process.
摘要:
A metal-containing pattern structure is formed on a semiconductor substrate, and a cleaning composition is applied to the semiconductor substrate. The cleaning composition includes, based on a total weight of the cleaning composition, about 78 wt % to about 99.98 wt % of an acidic aqueous solution, about 0.01 wt % to about 11 wt % of a first chelating agent, and about 0.01 wt % to about 11 wt % of a second chelating agent. The metal-containing pattern structure includes an exposed first surface portion and a second surface portion covered with a polymer. Application of the cleaning solution forms a first corrosion-inhibition layer on the first surface portion of the metal-containing pattern structure, and removes the polymer from the second surface portion of the metal-containing pattern structure.
摘要:
An etchant composition that allows simplification and optimization of semiconductor manufacturing process is presented, along with a method of patterning a conductive layer using the etchant and a method of manufacturing a flat panel display using the etchant. The etchant includes nitric acid, phosphoric acid, acetic acid, and an acetate compound in addition to water.
摘要:
Disclosed is a chemical-mechanical polishing composition used in a process for chemical-mechanical polishing of silicon oxide layer having severe unevenness with large step-height. The composition includes abrasive particles of metal oxide; and at least one compound(s) selected from the group consisting of amino alcohols, hydroxycarboxylic acid having at least 3 of the total number of carboxylic acid group(s) and hydroxyl group(s) or their salts, or a mixture thereof. A polymeric organic acid, a preservative, a lubricant and a surfactant may be further contained. The composition shortens the vapor-deposition time of a layer to be polished, saves the raw material to be vapor-deposited, shortens the chemical-mechanical polishing time, and saves the slurry employed.
摘要:
In one aspect, a composition is provided which is capable of removing an insulation material which includes at least one of a low-k material and a passivation material. The composition of this aspect includes about 5 to about 40 percent by weight of a fluorine compound, about 0.01 to about 20 percent by weight of a first oxidizing agent, about 10 to about 50 percent by weight of a second oxidizing agent, and a remaining water.
摘要:
The present invention relates to a novel slurry composition for copper polishing, comprising zeolite which is a porous crystalline material for CMP of copper film in a semiconductor manufacturing process. The slurry composition according to the present invention comprises zeolite, an oxidant and a polish promoting agent and may further comprise a corrosion inhibitor, a surfactant, an aminoalcohol, an antiseptic and a dispersion agent and pH is in a range of 1 to 7. The zeolite slurry according to the present invention has advantages of absorbing and removing metal cation generated in CMP process by using zeolite and having a low level of scratches as the zeolite has micropores therein and thus its hardness is low. The slurry composition using zeolite of the present invention is usable to both first and second step polishing of copper damascene process and particularly useful as the first step polishing slurry for copper.