Abstract:
A standoff contact array is disposed between a mounting substrate of a flip-chip package and a board. The standoff contact array is formable by mating a low-profile solder bump on the mounting substrate with a low-profile solder paste on the board. Thereafter, the standoff contact array is formed by reflowing the low-profile solder paste on the board against the low-profile solder bump on the mounting substrate.
Abstract:
Systems and methods may provide for a device including a housing, one or more electronic components positioned within the housing, and a first cured resin composition positioned within the housing, the first cured resin composition including a thermal energy storage material and a first filler material. The device may also include a second cured resin composition positioned within the housing, the second cured resin composition including the thermal energy storage material and a second filler material. The first filler material and the second filler material may be different, wherein the first cured resin composition and the second cured resin composition may encompass at least one of the one or more electronic components. In other examples, the electronic components include a power supply and the device complies with an ATEX equipment directive for explosive atmospheres. Moreover, component underfill and/or assembly overmold processes may be used to fabricate the device.
Abstract:
Systems and methods may provide for a device including a housing, one or more electronic components positioned within the housing, and a first cured resin composition positioned within the housing, the first cured resin composition including a thermal energy storage material and a first filler material. The device may also include a second cured resin composition positioned within the housing, the second cured resin composition including the thermal energy storage material and a second filler material. The first filler material and the second filler material may be different, wherein the first cured resin composition and the second cured resin composition may encompass at least one of the one or more electronic components. In other examples, the electronic components include a power supply and the device complies with an ATEX equipment directive for explosive atmospheres. Moreover, component underfill and/or assembly overmold processes may be used to fabricate the device.
Abstract:
A microelectronic package and a method of forming the package. The package includes a first level package mounted to a carrier. The first level package includes a package substrate having a die side and a carrier side; and a microelectronic die mounted on the package substrate at the die side thereof. The carrier has a substrate side, and the first level package is mounted on the carrier at the substrate side thereof. A rigid body is attached to the carrier side of the substrate at an attachment location of the substrate and to the substrate side of the carrier at an attachment location of the carrier, the attachment location of the carrier being electrically unconnected, the rigid body being configured and disposed to provide structural support between the substrate and the carrier.
Abstract:
A standoff contact array is disposed between a mounting substrate of a flip-chip package and a board. The standoff contact array is formable by mating a low-profile solder bump on the mounting substrate with a low-profile solder paste on the board. Thereafter, the standoff contact array is formed by reflowing the low-profile solder paste on the board against the low-profile solder bump on the mounting substrate.