Abstract:
Embodiments of catheters, imaging systems and methods for intravascular ultrasound imaging are presented. At least one miniaturized transducer element adapted to be inserted into a vascular structure and configured to produce signals for use in generating one or more ultrasound images of a desired region within the vascular structure is used. Further, one or more apodizing structures operably coupled to the transducer element and configured to decrease the responsiveness of the transducer element at one or more boundaries of the transducer element with respect to the center of the transducer element are used. Particularly, the apodizing structures reduce sidelobe amplitude of an ultrasound beam profile in the region of interest, thereby generating improved ultrasound images.
Abstract:
The present disclosure relates to the measurement of acoustic noise during ultrasound imaging. In one embodiment, a receive beam is directed in a different direction from a transmit beam when an acoustic noise signal is being measured. When a tissue signal is being measured, the receive beam is directed in substantially the same direction as the transmit beam.
Abstract:
Predictive Analog-to-Digital Converter system in one embodiment includes a sampling section producing a sampled analog input signal with a first summer section combining the sampled analog input signal and an analog prediction signal to produce an analog prediction error signal. There is at least one error analog-to-digital convertor digitizing the analog prediction error signal, wherein a digital error signal output from the error analog-to-digital convertor is one of a full bitwidth error signal during an over-range condition else a lower bitwidth error signal. A second summer is coupled to the digital error signal output and a digital prediction signal, and generates a full bitwidth digital output signal. A feedback section is coupled to the digital output signal and providing the digital prediction signal and the analog prediction signal.
Abstract:
A method and an apparatus for dynamically optimizing the frame rate as a function of an estimate of the target motion. First, the target motion is estimated, and then this estimate is used to control the number of firings per frame and/or the degree of frame-averaging. Preferably, the motion of the target is estimated by measuring pixel brightness variations on a frame-to-frame, region-to-region or line-to-line basis. Then the degree of frame-averaging is adjusted as a function of the motion estimate. Alternatively, target motion can be estimated by calculating the Doppler signal. Other imaging parameters, such as number of transmit firings per frame, size of the transmit aperture, and transmit excitation frequency, can be adjusted as a function of estimated target motion.
Abstract:
A method and an apparatus for adaptively suppressing incoherent data in a coherent imaging system. A focused ultrasound beam is transmitted with conventional transmit beamforming time delays. The returning echo signals are processed along two separate receive signal processing paths. The time delays along one processing path are set for traditional coherent receive beamforming, while the time delays along the other processing path are set to apply incoherent summing to the same set of return signals (e.g., time delays equal to zero). Then at each point in the receive beam or vector, the coherent and incoherent summation signals are compared. If the coherent and incoherent summation signals are of like amplitude, the beamformed signal of the first processing path is deemed incoherent, and its display is suppressed in the final image.
Abstract:
Methods and systems for improving correlation of shear displacement waveforms are presented. The method includes delivering one or more reference pulses to a plurality of target regions to detect corresponding initial positions. Further, a plurality of pushing pulse segments are delivered to one or more pushing locations, where one or more parameters corresponding to the plurality of pushing pulse segments are adapted for generating a shear displacement waveform with a desired wave shape. Additionally, one or more tracking pulses may be delivered to the plurality of target regions for detecting displacements of at least a subset of the target regions as a function of time. Particularly, the displacements are determined as time samples of the shear displacement waveform. Subsequently, a shift between the shear displacement waveform detected at least two different target regions in the subset of the plurality of target regions is detected.
Abstract:
Methods and systems for improving correlation of shear displacement waveforms are presented. The method includes delivering one or more reference pulses to a plurality of target regions to detect corresponding initial positions. Further, a plurality of pushing pulse segments are delivered to one or more pushing locations, where one or more parameters corresponding to the plurality of pushing pulse segments are adapted for generating a shear displacement waveform with a desired wave shape. Additionally, one or more tracking pulses may be delivered to the plurality of target regions for detecting displacements of at least a subset of the target regions as a function of time. Particularly, the displacements are determined as time samples of the shear displacement waveform. Subsequently, a shift between the shear displacement waveform detected at least two different target regions in the subset of the plurality of target regions is detected.
Abstract:
A method for correcting ultrasound data includes acquiring ultrasound data using an ultrasound probe having a plurality of transducer elements associated with a plurality of channels that include conductive pathways and communicating the ultrasound data as received ultrasound signals along the conductive pathways of the channels. The method further includes determining a crosstalk signal that is generated in one or more of the channels by at least one of communication of the received ultrasound signals along the channels or vibration of one or more of the transducer elements. In one aspect, the method also includes modifying one or more subsequently acquired ultrasound signals that are communicated along the channels based on the crosstalk signal.
Abstract:
A method and system for operating an ultrasound system is provided. The method comprising estimating a relative motion between a transducer and an imaging subject and controlling an adaptive beamformer system in response to to an estimation of the relative motion.
Abstract:
Techniques for minimizing artifacts resulting from ultrasound time-delay focusing while using a single-bit delta-sigma analog-to-digital converter for each beamformer channel include correcting the dynamic focus artifact in a delta-sigma beamformer by always inserting a pair of samples having a zero sum when a delay is required. Using other techniques, the dynamic focus artifact is not eliminated on each beamforming channel, but rather is eliminated in the beamsummed, reconstructed signal. In one technique, samples having a zero sum are respectively inserted on a pair of symmetric channels such that the net effect on the beamsummed signal is zero. In another technique, a +1 sample is inserted when a focus time delay is required, and either a pre-calculated or counted number of channels having a focus time delay at each time sample is subtracted from the beamsum.