Abstract:
A transmission circuit for use with an ultrasonic probe including an ultrasonic transducer is provided. The transmission circuit includes a high voltage current DAC configured to output a drive current of an ultrasonic transducer to transmit and receive ultrasound, and a waveform generator configured to output a control signal from the high voltage current DAC to the high voltage current DAC with a predetermined timing. The control signal configured to output the drive current with a desired magnitude.
Abstract:
A temperature management system and a method of monitoring temperature in an ultrasound imaging system is provided. The system includes an ultrasound probe. The ultrasound probe includes at least one ultrasound transducer and a plurality of application specific integrated circuits. Further, the system includes at least one temperature sensing device disposed on at least one of the plurality of application specific integrated circuits. The temperature sensing devices are disposed in such a way that the sensing devices are in thermal contact with at least one heat producing region of the ultrasound probe.
Abstract:
A transmission circuit for use with an ultrasonic probe including an ultrasonic transducer is provided. The transmission circuit includes a high voltage current DAC configured to output a drive current of an ultrasonic transducer to transmit and receive ultrasound, and a waveform generator configured to output a control signal from the high voltage current DAC to the high voltage current DAC with a predetermined timing. The control signal configured to output the drive current with a desired magnitude.
Abstract:
Predictive Analog-to-Digital Converter system in one embodiment includes a sampling section producing a sampled analog input signal with a first summer section combining the sampled analog input signal and an analog prediction signal to produce an analog prediction error signal. There is at least one error analog-to-digital convertor digitizing the analog prediction error signal, wherein a digital error signal output from the error analog-to-digital convertor is one of a full bitwidth error signal during an over-range condition else a lower bitwidth error signal. A second summer is coupled to the digital error signal output and a digital prediction signal, and generates a full bitwidth digital output signal. A feedback section is coupled to the digital output signal and providing the digital prediction signal and the analog prediction signal.
Abstract:
An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
Abstract:
A transmission circuit for use with an ultrasonic probe including an ultrasonic transducer is provided. The transmission circuit includes a high voltage current DAC configured to output a drive current of an ultrasonic transducer to transmit and receive ultrasound, and a waveform generator configured to output a control signal from the high voltage current DAC to the high voltage current DAC with a predetermined timing. The control signal configured to output the drive current with a desired magnitude.
Abstract:
Predictive Analog-to-Digital Converter system in one embodiment includes a sampling section producing a sampled analog input signal with a first summer section combining the sampled analog input signal and an analog prediction signal to produce an analog prediction error signal. There is at least one error analog-to-digital convertor digitizing the analog prediction error signal, wherein a digital error signal output from the error analog-to-digital convertor is one of a full bitwidth error signal during an over-range condition else a lower bitwidth error signal. A second summer is coupled to the digital error signal output and a digital prediction signal, and generates a full bitwidth digital output signal. A feedback section is coupled to the digital output signal and providing the digital prediction signal and the analog prediction signal.
Abstract:
Disclosed are capacitive micromechanical resonators optimized for high Q, low motional impedance, and large tuning range. Exemplary resonators were fabricated using a HARPSS-on-SOI process, and demonstrated quality factors up to 119000 in vacuum. For resonators operating between 3 MHz and 30 MHz, the lowest extracted impedance is 218 kΩ and the largest electrostatic tuning coefficient is −240 ppm/V2. The disclosed designs are applicable up to at least 200 MHz operation. An oscillator interface circuit comprising of a trans-impedance amplifier and an automatic bias generator providing a temperature-compensating bias voltage is also disclosed. Experiments show temperature drift reduction from 2800 ppm to 39 ppm over a 100° C. range. Process compensation (DFM) of micromechanical resonators, resonators having mass loading elements that allow generation of closely spaced frequencies, and coupled systems comprising of the resonators are also described.
Abstract:
An ultrasonic transducer driving circuit configured to supply an output current and/or an output voltage to an output line for driving an ultrasonic transducer is provided. The ultrasonic transducer driving circuit includes a first current discharge circuit configured to allow a current arising from electric charges accumulated in the ultrasonic transducer to flow from the output line to ground when the output line is at a positive voltage, and a second current discharge circuit configured to allow the current arising from the electric charges accumulated in the ultrasonic transducer to flow from ground to the output line when the output line is at a negative voltage. The first current discharge circuit and the second current discharge circuit are controlled based on the output current and/or the output voltage.
Abstract:
Systems and techniques for performing parasitic extraction on a via array are described. If the via array is a single row or column via array, the system identifies a first via and a last via in the via array, and merges a set of vias between the first via and the last via into a center via. If the via array is a M×N (M≧2, N≧2) via array, the system merges the vias as follows: the first row and the last row of vias in the via array into a first row via and a last row via, respectively; the first column and the last column of vias in the via array into a first column via and a last column via, respectively; and a set of vias between the first and last rows and the first and last columns into a center via.