摘要:
A method for correcting ultrasound data includes acquiring ultrasound data using an ultrasound probe having a plurality of transducer elements associated with a plurality of channels that include conductive pathways and communicating the ultrasound data as received ultrasound signals along the conductive pathways of the channels. The method further includes determining a crosstalk signal that is generated in one or more of the channels by at least one of communication of the received ultrasound signals along the channels or vibration of one or more of the transducer elements. In one aspect, the method also includes modifying one or more subsequently acquired ultrasound signals that are communicated along the channels based on the crosstalk signal.
摘要:
An ultrasound transducer element includes a piezoelectric layer, a front end body, and a backing layer assembly. The piezoelectric layer extends between opposite front and back sides and is configured to transmit acoustic waves from the front side. The front end is body disposed proximate to the front side of the piezoelectric layer and is configured to emit the acoustic waves out of a housing. The backing layer assembly is disposed proximate to the back side of the piezoelectric layer. The backing layer assembly includes a first thermally conductive mesh disposed in a matrix enclosure. The first thermally conductive mesh is positioned to conduct thermal energy away from the piezoelectric layer. In one aspect, the first thermally conductive mesh is a grid of elongated strands of a metal or metal alloy material oriented in at least one of transverse or oblique directions.
摘要:
Ultrasound probes, and methods of forming probes, with electromagnetic shielding and/or improved heat management are provided. Certain probes include an acoustic stack including an active layer, a protection face plate or lens, and a matching layer. The matching layer includes a mass layer and a spring layer. The probe further includes a cable configured to communicate signals to and from the ultrasound probe. The probe further includes an electromagnetic radiation shield comprising the mass layer. The shield encompasses the active layer and the cable, and is grounded via an electrode. The shield is configured to inhibit external electromagnetic radiation from interfering with the signals communicated to and from the ultrasound probe via the cable. Certain probes are configured such that the mass layer is thermally connected to a thermal drain or a heat sink such that heat is conducted away from the protection face plate or lens.
摘要:
Systems and methods for providing controllable attenuation of an ultrasound probe are provided. The ultrasound probe includes a housing having a membrane, a transducer array within the housing and a fluid between the transducer array and the membrane. The membrane is configured to contact an object and the fluid is configured to allow controllable attenuation of the ultrasound probe.
摘要:
Antenna, in particular for a sonar, allowing to form directional channels by feeding the transducers by a reduced number of sources by means of an interpolation network that permits to maintain to a low level the image lobes in spite of this reduction of the number of sources.
摘要:
A method for forming an acoustical stack for an ultrasound probe comprises partly dicing a single crystal piezoelectric material to form single crystal pieces that are partly separated by a plurality of kerfs. The single crystal piezoelectric material comprises a carrier layer. The kerfs are filled with a kerf filling material to form a single crystal composite and the carrier layer is removed. At least one matching layer is attached to the single crystal composite, and dicing within the kerfs is accomplished to form separate acoustical stacks from the single crystal composite.
摘要:
A system for improving the acoustic performance of an ultrasound transducer by reducing artifacts within the acoustic spectrum is disclosed. The system includes an acoustic layer having an array of acoustic elements, a dematching layer coupled to the acoustic layer and having an acoustic impedance greater than an acoustic impedance of the acoustic layer, and an interposer layer coupled to the dematching layer and comprising a substrate and a plurality of conductive element. The interposer layer is formed to have an acoustic impedance lower than the acoustic impedance of the dematching layer. The ultrasound transducer also includes an integrated circuit coupled to the interposer layer and electrically connected to the array of acoustic elements through the dematching layer and the interposer layer.
摘要:
A method for correcting ultrasound data includes acquiring ultrasound data using an ultrasound probe having a plurality of transducer elements associated with a plurality of channels that include conductive pathways and communicating the ultrasound data as received ultrasound signals along the conductive pathways of the channels. The method further includes determining a crosstalk signal that is generated in one or more of the channels by at least one of communication of the received ultrasound signals along the channels or vibration of one or more of the transducer elements. In one aspect, the method also includes modifying one or more subsequently acquired ultrasound signals that are communicated along the channels based on the crosstalk signal.
摘要:
An acoustical stack for an ultrasound probe comprises a piezoelectric layer having top and bottom sides and a plurality of matching layer sections forming a matching layer structure. Each of the matching layer sections comprises a spring layer comprising a first material and a mass layer comprising a second material that is different than the first material. The spring layer within the matching layer section that is positioned closest to the piezoelectric layer is thinner than the spring layer within the other matching layer sections.
摘要:
A method for manufacturing an acoustical stack for use within an ultrasound transducer comprises using a user defined center operating frequency of an ultrasound transducer that is at least about 2.9 MHz. A piezoelectric material and a dematching material are joined with an assembly material to form an acoustical connection therebetween. The piezoelectric material has a first acoustical impedance and *at least one of* an associated piezoelectric rugosity (Ra) and piezoelectric waviness (Wa). The dematching material has a second acoustical impedance that is different than the first acoustical impedance and at least one of an associated dematching Ra and dematching Wa. The piezoelectric and dematching materials have an impedance ratio of at least 2. The assembly material has a thickness that is based on the center operating frequency and at least one of the piezoelectric Ra, piezoelectric Wa, dematching Ra and dematching Wa.