摘要:
A negative electrode for a lithium ion battery 10 includes a negative electrode current collector 11, a negative electrode active material layer 14, and a lithium silicate layer 15. The negative electrode active material layer 14 contains silicon. The lithium silicate layer 15 contains lithium, oxygen, and silicon forming a Li—O—Si bond, and is formed at the interface between the negative electrode current collector 11 and the negative electrode active material layer 14. The negative electrode active material layer 14 and the lithium silicate layer 15 may be composed of columnar bodies.
摘要:
In a charge/discharge method for a positive-electrode active material in a lithium secondary battery, the lithium secondary battery includes a positive electrode containing a positive-electrode active material capable of occluding and releasing lithium ions, a negative electrode containing a negative-electrode active material capable of occluding and releasing lithium ions, a separator located between the positive electrode and the negative electrode, and an electrolyte having a lithium ion conductivity; and the positive-electrode active material contains a nickel-type lithium-containing complex oxide. The positive electrode, which has been charged, is discharged until having a first potential VDp1 which is no less than 2.7 V and no more than 3.4 V on a lithium metal basis, and then the discharge is finished. Owing to this, the charge/discharge cycle life can be improved while the capacity of the lithium secondary battery is secured.
摘要:
A negative electrode including a negative electrode current collector, first protrusions on a surface of the negative electrode current collector, a separation-stopping area on at least a part of a surface of each first protrusion, and a negative electrode active material layer including a negative electrode active material and formed on at least a top face of the first protrusion. This structure suppresses the separation of the negative electrode active material layer from the negative electrode current collector, the degradation of the current collecting ability, and the deformation of the negative electrode itself. A lithium ion secondary battery including this negative electrode has a high battery capacity, a high energy density, and an excellent charge/discharge cycle characteristic, and is capable of stably maintaining a high power over an extended period of time.
摘要:
A molded solid electrolyte, a molded electrode and an electrochemical device which contain a polymer composition consisting of 50 to 100 wt % of 1,2-polybutadiene having a 1,2-vinyl content of 70% or more and a crystallinity of 5 to 50%, and 0 to 50 wt % of polar rubber. According to the present invention, it becomes possible to obtain a molded solid electrolyte provided with high ionic conductivity and high workability, or a molded electrode having high electrode activity, and it is also possible to obtain an electrochemical device showing excellent activating properties by using the molded solid electrolyte and the molded electrode.
摘要:
A solid-state secondary lithium battery with excellent charge and discharge cycle characteristics, using a negative electrode active material which shows discontinuous change of potential caused by the lithium ion insertion and extraction reactions, wherein the amount of the lithium ion inserted, until discontinuous change of potential of the negative elctrode takes place, is equal to or smaller than the maximum amount of extraction of lithium ions within the range where lithium ions are inserted and extracted into or from the lithium transition metal oxide reversibly, and a battery assembly using these batteries.
摘要:
A method for producing an electrochemically advantageous lithium ion-conductive solid electrolyte with high ionic conductivity, low electronic conduction and electrochemical stability is disclosed. The method comprises the steps of synthesizing lithium sulfide by reacting lithium hydroxide with a gaseous sulfur source at a temperature of not less than 130.degree. C. and not more than 445.degree. C., thermally melting plural compounds containing at least silicon sulfide and the synthesized lithium sulfide, and cooling the molten mixture. The silicon sulfide is synthesized by the steps of adding a silicon powder to molten sulfur while stirring to disperse the silicon powder in the molten sulfur and heating the silicon powder-dispersed sulfur in a reaction chamber under reduced pressure.
摘要:
A solid-state lithium secondary battery having a high safety and being free from the formation and growth of lithium dendrites is disclosed. It comprises a cathode having as an active material at least one compound selected from the group consisting of oxides and sulfides of a transition metal, a lithium ion-conductive solid electrolyte of a glass comprising Li.sub.2 S, and an anode having as an active material a metal capable of forming an alloy with lithium, wherein at least one of the cathode active material and anode active material contains lithium.
摘要:
An ion conductive, fibrous solid electrolyte having a high ion conductivity, a distinguished mechanical strength and a good processability is provided by making an ion conductive solid electrolyte fibrous and glassy and shaping the resulting fibrous glassy solid electrolyte alone or together with thermoplastic resin fibers, and the shaped product is used in a cell as a solid electrolyte layer.
摘要:
Provided is a highly safe portable electronic device having a secondary battery as a power source, and including a housing, an electronic device body housed in the housing, and a battery housing portion housed in the housing, in which a surface is inhibited from being locally heated to high temperature. In the portable electronic device, the battery housing portion is a molding with a battery fitting portion for fitting the secondary battery therein, and the battery fitting portion has provided on its surface a heat-insulating layer having a thickness of from 500 to 3000 μm and a thermal conductivity of 0.2 W/m·K or lower.
摘要:
Provided is a highly safe portable electronic device having a secondary battery as a power source, and including a package, an electronic device body housed in the package, and a battery housing portion housed in the package, in which even if the content melts due to an extremely significant impact applied thereto, discharge of a melt is inhibited. In the portable electronic device, the battery housing portion is a molding with a battery fitting portion for fitting the secondary battery therein, and the battery fitting portion has a covering layer, which includes a temperature suppression layer and a block layer, provided on its surface.