Abstract:
An improved lamp fixture with anti-glare function is disclosed, which comprises: a lamp; a light source; and a light-control unit, composed of a semi-Fresnel microstructure and a light-control microstructure; wherein the light source and the light-control unit are mounted on the lamp; and the semi-Fresnel microstructure is used for diffusing/collimating light of the light source while the light-control microstructure is used for controlling the resulting lighting angle. With the aforesaid lamp fixture, not only glare can be prevented, but also uniformity of the lamp fixture is improved.
Abstract:
A die structure, a manufacturing method and a substrate, wherein the die structure is constituted by a chip on wafer (COW) and the substrate, and the substrate is formed by stacking and then cutting a plurality of thermal and electrical conductive poles and a plurality of insulating material layers. Moreover, the fabricating of the die structure comprises a plurality of COWs carried on a carrier board is bonded on the substrate, the plurality of COWs are in contact with the plurality of thermal and electrical conductive poles on the substrate, and then the carrier board is removed. After that, a phosphor plate is adhered on the plurality of COWs so as to form a stacked structure. Thereafter, the stacked structure is cut, thus forming a plurality of die structures having at least one COW.
Abstract:
A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
Abstract:
A die-bonding method is suitable for die-bonding a LED chip having a first metal thin-film layer to a substrate. The method includes forming a second metal thin film layer on a surface of the substrate; forming a die-bonding material layer on the second metal thin film layer; placing the LED chip on the die-bonding material layer with the first metal thin film layer contacting the die-bonding material layer; heating the die-bonding material layer at a liquid-solid reaction temperature for a pre-curing time, so as to form a first intermetallic layer and a second intermetallic layer; and heating the die-bonding material layer at a solid-solid reaction temperature for a curing time, so as to perform a solid-solid reaction. The liquid-solid reaction temperature and the solid-solid reaction temperature are both lower than 110° C., and a melting point of the first and second intermetallic layers after the solid-solid reaction is higher than 200° C.
Abstract:
A light-emitting diode (LED) module and an LED packaging method. As the LED module is packaged under the consideration of candela distribution, each of the lead frames of the LED chips packaged in the LED module is bended for tilting the LED chips by different angles to exhibit various lighting effects. Meanwhile, in the LED packaging method, a plurality of LED chips can be loaded on board rapidly and aligned by one operation to result in less deviation in the candela distribution curve.
Abstract:
A diffraction grating recording medium including a waveguide layer and a grating structure layer is provided. The waveguide layer has a reflective surface and a light incident surface, in which a thickness of the waveguide layer is between 100 nanometers and 2 micrometers, and the reflective surface reflects a light that enters the waveguide layer from the light incident layer. The grating structure layer is disposed on the light incident surface of the waveguide layer, in which the grating structure layer has a plurality of diffractive elements, and the arranging period of the diffractive elements is between 50 nanometers and 900 nanometers.
Abstract:
An optical waveguide bio-sensing device, comprising: a monochromatic light source, a beam splitter, a grating chip with a sub-wavelength grating structure and a sensor. Moreover, in order to enhance the sensitivity of the system using the optical waveguide bio-sensing device, a light concentrating element or a quarter waveplate (¼λ) is arranged in the optical path during detection. When the grating chip is not coated with a layer of biochemical substance corresponding to a monochrome light emitted from the monochromatic light source, a reflected light of a specific narrow wavelength is reflected by a specific angle as a surface plasmon resonant effect caused by waveguide coupling is excited by the incidence of the monochrome light to the grating chip through the beam splitter; otherwise, there will be little or no reflection. Accordingly, the optical waveguide bio-sensing device can detect bio-molecular interactions, reaction rate and/or molecular dynamics without any labeling in real time. Optical systems using the present invention are simplified and capable of being portable. Thus a high sensitivity detection technique is achieved.
Abstract:
A luminaire with reflector of negative focal length is disclosed, which comprises a light source and a luminaire screen having a reflector of negative focal length, a side screen and a plate; wherein the reflector of negative focal length is capable of reflecting the upward-incident rays emitted from the light source; and the side screen is capable of reflecting the sideward-incident rays emitted from the light source and the reflected rays of the reflector; and the plate being disposed at the lower portion of the luminaire screen beneath the light source has a plurality of micro-structures arranged thereon and is capable of accepting the rays of the downward incident area along with both the reflected rays of the reflector and the side screen so as to diffuse the same for discharging. By the luminaire screen of the invention, the rays emitting from the light source of the luminaire are reflected and directed to a preferred discharging area so as to enable the rays to be discharged out of the luminaire by large angles for reducing glare.
Abstract:
A method for bonding an LED wafer, a method for manufacturing an LED chip, and a bonding structure are provided. The method for bonding an LED wafer includes the following steps. A first metal film is formed on an LED wafer. A second metal film is formed on a substrate. A bonding material layer whose melting point is lower than or equal to about 110° C. is formed on the surface of the first metal film. The LED wafer is placed on the substrate. The bonding material layer is heated at a pre-solid reaction temperature for a pre-solid time to perform a pre-solid reaction. The bonding material layer is heated at a diffusion reaction temperature for a diffusing time to perform a diffusion reaction, wherein the melting points of the first and the second inter-metallic layers after diffusion reaction are higher than about 110° C.
Abstract:
The disclosure relates to a solar heating device comprising at least one incidence collector and a thermal container. The thermal container includes at least one light absorbing recess, wherein at least one of the incidence collectors focuses solar beams on a focal point, which is located inside the light absorbing recess. The inner surface of the light absorbing recess converts the energy of the solar beams into radiant heating.