Abstract:
A method and apparatus for determining a pressure in an annulus between an inner casing and an outer casing. An acoustic transducer is disposed within the casing at a selected depth within the inner casing and is configured to generate an acoustic pulse and receive a reflection of the acoustic pulse from the inner casing. A time of flight is measured of the acoustic pulse to the inner surface of the inner casing. An inner diameter of the inner casing is determined from the time of flight. The pressure in the annulus is determined from the inner diameter. A processor can be used to measure time and determine inner diameter and annulus pressure.
Abstract:
A method and apparatus for determining a pressure in an annulus between an inner casing and an outer casing. An acoustic transducer is disposed within the casing at a selected depth within the inner casing and is configured to generate an acoustic pulse and receive a reflection of the acoustic pulse from the inner casing. A time of flight is measured of the acoustic pulse to the inner surface of the inner casing. An inner diameter of the inner casing is determined from the time of flight. The pressure in the annulus is determined from the inner diameter. A processor can be used to measure time and determine inner diameter and annulus pressure.
Abstract:
This disclosure relates to an apparatus and method for controlling the amount of an additive injected into production fluid in a plurality of production zones. The injection devices may be dynamically controlled such that a central or decentralized control system may instruct a plurality of additive injection assemblies to inject additive, wherein different additive and/or different amounts of additive may be injected in the production fluid in the plurality of production zones. The apparatus includes one or more controllers to send operating commands to downhole regulating elements that may control the amount of additive being injected directly or indirectly.
Abstract:
In at least some embodiments, electronic devices suitable for use at temperatures in excess of 200 C. may comprise an integrated circuit fabricated on a silicon carbide substrate, and a thick passivation layer. In other embodiments, electronic devices suitable for use at temperatures in excess of 200 C. may comprise an integrated circuit formed from silicon located on a sapphire substrate, and a thick passivation layer. The electronic devices may be implemented in the context of hydrocarbon drilling and production operations.
Abstract:
A patient's garment which is suitable for various medical procedures, which will give the patient a sense of dignity and well-being, and which is of relatively low cost, high durability and common sizing. The patient's garment has a body portion (10) and sleeves (14). The body portion includes a main panel (16) which can be positioned to either the front or rear side of the patient and a pair of adjacent side panels (18, 20) which would normally be positioned on the other side of the patient. The outer side edges (28, 30) of the side panels are joined together in overlapping relationship when the garment is worn by the patient by a plurality of vertically spaced apart fasteners (42, 44). The sleeves 14 are sewn to the body portion, and the top of each sleeve is provided with an openable seam having adjacent mating edges (34, 36) which extend from the neck of the patient over the patient's shoulder and down along the arms. The mating edges can be held together in overlapping relationship by a plurality of spaced apart hook and loop fasteners (56, 58). The fasteners can be opened to facilitate various hospital procedures such as X-rays, thorax and upper abdomen examinations, and I.V. therapy, and also permits a mother to nurse her baby without removal of the garment.
Abstract:
A system includes a common line configured to conduct electrical power and one or more monitoring devices coupled to the common line and configured to operate when a positive voltage is provided on the common line. The system also includes a single use device coupled to the common line and an activation circuit coupled between the single use device and the common line, the activation circuit only allowing current to flow through the single use device when a negative voltage is provided on the common line.
Abstract:
A resistivity tool includes receiver electronics near each receiver antenna loop. Placement of the electronics in this position such as at the circuit card between the terminal ends of the receiver antenna loop improves signal to noise ratio by reducing or eliminating interference, noise, and cross-talk of transmissions from the receiver to a remote microprocessor. By using material such as silicon-on-sapphire, electronics can be miniaturized and operate reliably at when exposed to high temperatures, even for long periods.
Abstract:
A method and related system calibrating downhole tools for drift. Some of the illustrative embodiments are a logging tool comprising a tool body, a transmitter antenna associated with the tool body, a transmitter electronics coupled to the transmitter antenna, a first receiver antenna associated with the tool body, a first receiver electronics coupled to the first receiver antenna, and a signal generator separate from the first transmitter electronics, the signal generator coupled to the first receiver electronics, and the first signal generator provides a calibration signal to the first receiver electronics.
Abstract:
Disclosed herein are various nonvolatile integrated device embodiments suitable for use at high temperatures. In some embodiments, a high temperature nonvolatile integrated device comprises a sapphire or spinel substrate having multiple ferroelectric memory cells disposed upon it. In other embodiments, a high temperature nonvolatile integrated device comprises a silicon on insulator substrate or a large bandgap semiconductor substrate having multiple ferroelectric or magnetic memory cells disposed on it. In yet other embodiments, a high temperature nonvolatile integrated device comprises a sapphire, silicon on insulator, or a large bandgap substrate having programmable read only memory (PROM) cells or electrically erasable PROM (EEPROM) cells disposed on it.
Abstract:
Disclosed herein is a downhole communication system. The system includes, a plurality of addressed downhole devices, a plurality of remote devices, and a plurality of conductors. Each of the plurality of conductors is electrically conductively connected to at least one of the plurality of addressed downhole devices and at least one of the plurality of remote devices, the downhole communication system is configured such that at least one of the plurality of devices is able to receive and recognize encoded addresses and encoded data in an electrical signal transmitted at least one of the plurality of conductors electrically conductively isolated from the device configured to be receptive to the electrical signal having the encoded addresses and encoded data.