Abstract:
A process for preparing polymeric amides is disclosed. The process comprises sequentially reacting a hydrocarbon polymer functionalized (e.g., via the Koch reaction) to contain acid, ester, thioacid and/or thioester groups with a heavy polyamine to form a partially derivatized product in which at least about 85% of the functional groups are converted to heavy (thio)amide groups, and then reacting the partially derivatized product with an excess of light amine to complete the derivatization by converting substantially all of the remaining functional groups to light (thio)amide groups. Products of the foregoing process are also disclosed, which products are useful as additives in fuels and in lubricants.
Abstract:
A rapid, batch Koch carbonylation/functionalization reaction of at least one polymer olefin, carbon monoxide, and an aliphatic or aryl alcohol in the presence of an acid catalyst with either an alcohol:polymer olefin mole ratio .gtoreq.1:1, or an acid catalyst:polymer olefin mole ratio .gtoreq.0.9:1, or both, and recovering at least 80% functionalized polymer which is predominantly ester.
Abstract:
A Koch functionalized product, which is the reaction product of at least one hydrocarbon with carbon monoxide and a nucleophilic trapping agent, is derivatized with a heavy polyamine and a second amine. The hydrocarbon is a hydrocarbon compound or a hydrocarbon polymer. A heavy polyamine is a mixture of polyamines containing small amounts of lower polyamine oligomers such as tetraethylene pentamine and pentaethylenehexamine and containing primarily oligomers with more than 6 nitrogens and more extensive branching. Rubber seals embrittlement is reduced or minimized.
Abstract:
A succinimide dispersant, which is the reaction product of hydrocarbons or polymers functionalized by halogenation (e.g. chlorination), thermal "ene" reaction or free radical grafting and derivatized with a heavy polyamine. A heavy polyamine is a mixture of polyalkylenepolyamines comprising small amounts of lower polyamine oligomers such as tetraethylene pentamine and pentahexamine but primarily oligomers with 7 or more nitrogens, 2 or more primary amines per molecule, and more extensive branching than conventional polyamine mixtures.
Abstract:
A hydrocarbon composition functionalized via the Koch reaction which is the reaction product of at least one hydrocarbon having a number average molecular weight of less than 500 and at least one ethylenic double bond per molecule, with carbon monoxide and a nucleophilic trapping agent. The hydrocarbon is usefully functionalized and derivatized, producing, in particular, lubricants suitable for use in two-cycle engines.
Abstract:
A continuous process for functionalizing olefins, especially polymer olefins in a CSTR or pipe reactor. Esters are preferably produced by continuous reaction of the olefin with carbon monoxide and a nucleophilic trapping agent. The liquid-filled pipe reactor operates in plug flow with static mixers and the CSTR is operated in the substantial absence of air at constant liquid level.
Abstract:
A dispersant derivatized from a functionalized hydrocarbon and a polyamine having one primary amine and 1-10, preferably 3-8 secondary or tertiary amines; preferably where said functionalized hydrocarbon is a Koch-derived hydrocarbon.
Abstract:
Oil-soluble dispersant additives are disclosed. The additives comprise the reaction product of a functionalized 1-butene copolymer and at least one nucleophilic reactant selected from amines, amino alcohols, alcohols, and reactive metal compounds. The functionalized copolymer has within its structure at least one acyl functional group selected from the group consisting of C.sub.4 to C.sub.10 dicarboxylic acids and derivatives thereof and C.sub.3 to C.sub.10 monocarboxylic acids and derivatives thereof. The 1-butene copolymer is derived from 1-butene and at least one other .alpha.-olefin of formula CH.sub.2 .dbd.CHR', wherein R' is methyl or a C.sub.3 to C.sub.12 linear or branched alkyl group. The copolymer has a number average molecular weight of at least about 700, a molecular weight distribution of less than 5, and ethenylidene groups terminating at least about 30% of all polymer chains. The dispersant additives are useful in oleaginous compositions including lubricating oil compositions and concentrates and fuel compositions.
Abstract:
The present invention is directed to a process for preparing a polymeric amide which comprises the steps of:(A) reacting a mixture of (i) functionalized hydrocarbon polymer containing ester functional groups comprising at least one member selected from the group consisting of substituted alkyl ester functional groups, the substituted alkyl moiety containing at least one electron withdrawing substituent group, and aryl ester functional groups, the hydrocarbon polymer having a number average molecular weight of at least about 500 prior to functionalization, and (ii) an amine having at least one reactive --NH.sub.2 moiety, for a time and under conditions sufficient to form amide groups; and(B) removing from the mixture during step (A) hydroxyl compound released from the ester functional groups in forming the amide groups.The polymeric amides so produced are useful as fuel additives (e.g., detergents) and lubricating oil additives (e.g., dispersants).
Abstract:
A polymer having a terminal hydroxyl, aldehyde or alkylamino substituent which may be used directly or in a derivative form as a dispersant for both fuel and lubricating oil compositions, wherein the polymer has a M.sub.n of about 300 to 10,000, and is derived from a polyolefin which is derived from a polyene (diene, e.g.), monomer of the formula H.sub.2 C.dbd.CHR.sup.4, wherein R.sup.4 is hydrogen or a straight or branched chain alkyl radical. Preferably, the polyolefin has at least about 30% terminal vinylidene unsaturation. Particularly desirable amine derivatives can be formed by either a single step aminomethylation process or a two step hydroformylation and reductive amination process.