Abstract:
An actuator module is disclosed. The actuator module includes an actuator having at least one elastomeric dielectric film disposed between first and second electrodes. A suspension system having at least one flexure is coupled to the actuator. The flexure enables the suspension system to move in a predetermined direction when the first and second electrodes are energized. A mobile device that includes the actuator module and a flexure where the actuator module assembly is used to provide haptic feedback also are disclosed.
Abstract:
The present invention provides a system comprising a high-voltage capacitive device and a power circuit electrically coupled to the capacitive device, wherein the power circuit is configured for stepping up a lower DC source voltage to a higher DC output voltage, wherein the source voltage is less than about 5 V, and wherein the output voltage is at least about 1.25 kV, and wherein the power circuit comprises a magnetic component and a switching component for charging and discharging the magnetic component, wherein the switching component has a high resistance of at least about 5 ohms.
Abstract:
Electroactive polymer transducers are disclosed. They are biased in a manner that provides for increased force and/or stroke output, thereby offering improved work potential and power output capacity. The biasing may offer additional or alternate functional advantage in terms of matching transducer performance with a given application such as a normally-closed valve. The improved biasing (including increased output biasing) may utilize negative spring rate biasing and/or a combination of negative or zero-rate biasing with positive rate biasing to achieve the desired ends.
Abstract:
The present invention provides optical systems, devices and methods which utilize one or more electroactive polymer actuators to adjust an optical parameter of the optical device or system.
Abstract:
The present invention provides optical systems, devices and methods which utilize one or more electroactive polymer actuators to adjust an optical parameter of the optical device or system.
Abstract:
Electroactive polymer transducers are disclosed. They are biased in a manner that provides for increased force and/or stroke output, thereby offering improved work potential and power output capacity. The biasing may offer additional or alternate functional advantage in terms of matching transducer performance with a given application such as a normally-closed valve. The improved biasing (including increased output biasing) may utilize negative spring rate biasing and/or a combination of negative or zero-rate biasing with positive rate biasing to achieve the desired ends.
Abstract:
The present invention provides a housing to allow for removable coupling of electroactive polymer transducer with an electronic media device, where the housing produces an improved haptic effect in the electronic media device.