Abstract:
An image display apparatus includes a rear plate including electron-emitting devices, a face plate including an anode electrode, a voltage applying unit configured to apply a voltage to the anode electrode, a switching unit configured to switch between a display state of displaying an image and a non-display state of displaying no image, and a timing unit. The timing unit measures a non-display time, which is an amount of time that the switching unit allows the non-display state to continue. After the timing unit has measured a certain non-display time, the voltage applying unit applies, to the anode electrode, a second voltage lower than a first voltage to be applied in the display state, to enable the electron-emitting devices to emit electrons.
Abstract:
Provided is an image display apparatus, including: a vacuum container which includes an electron source and an anode electrode opposed to the electron source; and an ion pump arranged so as to communicate through the vacuum container, in which: an ion pump container is composed of a non-electroconductive material; and an electroconductive film is formed on an external surface of the vacuum container on a side on which the ion pump container is mounted or on an internal surface of the ion pump container. The image display apparatus achieves: a reduction in weight of the ion pump; an improvement in compatibility to the vacuum container; and the prevention of an adverse effect of discharge inside the ion pump on image display.
Abstract:
An apparatus for liquid-jet recording comprises an electro-thermal transducer and discharge openings for jetting a liquid by thermal action of the electrothermal transducer. The electro-thermal transducer is connected directly to a lower potential side of a power source and is connected to a higher potential side of the power source through a switch element. Thermal action of the thermal transducer occurs upon the application of a positive voltage of a high potential from the power source through the switch element.
Abstract:
A light emitting device has a luminescent layer having at least two layers of a non-single crystalline material containing silicon atoms, carbon atoms and fluorine atoms laminated and having a homojunction, and at least a pair of electrodes connected electrically to said luminescent layer, the non-single crystalline silicon layer having an optical band gap of 2.0 eV or higher and a localized level density at mid-gap of 5.times.10.sup.16 cm.sup.-3.ev.sup.-1 or less.
Abstract translation:发光器件具有发光层,其具有层叠并具有同质结的硅原子,碳原子和氟原子的至少两层的非单晶材料,以及至少一对电连接到所述发光层的电极, 光学带隙为2.0eV以上的非单晶硅层和中间间隙的局部水平密度为5×10 16 cm -3ev-1以下。
Abstract:
A luminescing member emits light as a result of application of excitation energy thereto, wherein a luminescing part comprises on ultrafine particle film formed by deposition of ultrafine particles. It is preferred that the ultrafine particles comprises an amorphous A:Ox or an amorphous A:O:H having an A--O--A bond and an A--OH bond, and the element A is at least one element selected from the group consisting of Si, C and Ge.
Abstract:
A method for forming a deposited film by forming a gaseous atmosphere of a hydrogenated silicon compound of the general formula Si.sub.n H.sub.m wherein n is an integer of 1 or more, and m is an integer of 2 or more in a chamber housing a substrate therein and forming a deposited film containing silicon on said substrate by excitation of said compound to effect decomposition or polymerization thereof comprises introducing a gaseous radical polymerization initiator into said chamber and utilizing light energy, thereby exciting said compound to effect decomposition or polymerization thereof.
Abstract:
An electroluminescent device, which emits light by recombination of the carriers injected or excited by light of energy of electrical field, comprising an active layer which includes a semiconductor layer of a super-lattice structure. The layer in the super-lattice structure is changed in effective band gap by an electrical field externally applied to vary the emitted light wavelength. The semiconductor layer of said super-lattice structure comprising an non-single crystalline semiconductor material.
Abstract:
A method for forming a deposited film comprises forming in a vacuum chamber housing a substrate therein a deposited film containing silicon on the substrate by subjecting a gas represented by the general formula: ##STR1## wherein R.sup.1, R.sup.2, R.sup.3 and R.sup.4, can be the same or different and are each independently hydrogen or a hydrocarbon group, to polymerization.
Abstract:
A liquid jet recording head comprises a substrate comprising a support, a resistive heater layer, electrodes electrically connected with the resistive heater layer, a portion of the resistive heater layer located between the electrodes being an electrothermal transducer, and an upper layer comprising a first protective layer comprising an inorganic insulating material, a second protective layer comprising an inorganic material, and a third protective layer comprising an organic material, wherein and the second protective layer and the third protective layer overlap each other in the vicinity of a portion where heat is generated by the electrothermal transducer and the overlapping width of the second protective layer and the third protective layer ranges from 10 .mu.m to 500 .mu.m. In another embodiment, the second protective layer extends along plural liquid flow paths for substantially less than the length thereof in a continuous strip that covers adjacent transducers.
Abstract:
A semiconductor device comprises an insulating region residing adjacent to a first semiconductor region, a control electrode residing via the insulating region, a second semiconductor region and a third semiconductor region, which have an opposite conduction type to that of the first semiconductor region, residing adjacent to and carrying therebetween the first semiconductor region. When the first, second and third semiconductor regions and the control electrode are grounded, the first semiconductor region in contact with the insulating layer is adjusted to be in weak inversion state, and the potential of the control electrode and that of the first semiconductor region are electrically coupled to be operable.