摘要:
A combustion pressure detection device for detecting combustion pressure inside a combustion chamber of an internal combustion engine, the combustion pressure detection device being attachable to a communication hole communicating an inside of a cylinder head configuring the combustion chamber and an outside thereof, the combustion pressure detection device includes: a housing; and an piezoelectric element and the like that are located in the housing and detect the combustion pressure. The housing has an attachment structural part attachable to the communication hole, the attachment structural part has a third outer peripheral surface to which a first seal member is attachable, and a inclined surface to which a second seal member is attachable, and the inclined surface is arranged at a front end side in a direction to the combustion chamber relative to the third outer peripheral surface when the combustion pressure detection device is attached to the communication hole.
摘要:
An apparatus for controlling an internal combustion engine that can estimate a quantity of heat generated is provided.An arithmetic processing unit 20 can calculate PVκ variable according to a crank angle θ and dPVκ/dθ as a rate of change in PVκ. For convenience' sake, a “crank angle at which dPVκ/dθ is a maximum while PVκ is increasing” is to mean a “crank angle at a combustion proportion of 50%” and be referred to also as “θCA50”. PVκ calculated for θCA50 is to be referred to also as “PVκCA50”. In addition, for convenience' sake, a difference between PVκ (which is zero in the embodiment as shown in FIGS. 3 and 4) and PVκCA50 at a start of combustion is also referred to as ΔPVκCA50. A total quantity of heat generated Q is assumed to be twice as much as a value of ΔPVκCA50.
摘要:
A minute amount of fuel is injected into a combustion chamber during fuel cut, and a cylinder pressure is detected when the minute amount of fuel is being combusted. Then a combustion ratio is calculated based on the detected cylinder pressure, and a determination crank angle, which is used for determining a cetane number based on the combustion ratio, is determined. The cetane number is determined based on the determination crank angle.
摘要:
An object of the present invention is to provide an abnormality detection device for an in-cylinder pressure sensor and an abnormality detection method for an in-cylinder pressure sensor that is able to detect preload loss abnormality of an in-cylinder pressure sensor.An in-cylinder pressure sensor has a strain gauge element to which preload was given. Under an operating state of an internal-combustion engine, it is judged whether Pim/Pex that is a ratio of intake pressure Pim to exhaust gas pressure Pex is 1. Reset of temperature drift is performed when Pim/Pex is 1. If an output voltage which serves as a base of calculation of Pim after the reset of a temperature drift is equal to a circuit limit value, existence of preload loss abnormality is determined.
摘要:
Heat generation amount PVκ(θ) is calculated with the use of cylinder pressure P(θ), detected by a cylinder pressure sensor, cylinder, volume V(θ), and specific heat ratio κ (steps 100 to 102). A crank angle θfix, at which the value of PVκ(θ) peaks, is determined as a start crank angle, at which an adiabatic process after combustion starts (step 104). A correction coefficient Kfix is calculated based on the variation of the value of PVκ(θ) after θfix (step 106). An actual heat generation amount PVκ(θ) is calculated with the use of the correction coefficient Kfix (step 110). A cooling loss coefficient Kcool that determines a correlation between the cooling loss and crank angles may be calculated based on a water temperature and an engine speed and the actual heat generation amount PVκfix(θ) may be made to reflect the cooling loss coefficient Kcool.
摘要:
A minute amount of fuel is injected into a combustion chamber during fuel cut, and a cylinder pressure is detected when the minute amount of fuel is being combusted. Then a combustion ratio is calculated based on the detected cylinder pressure, and a determination crank angle, which is used for determining a cetane number based on the combustion ratio, is determined. The cetane number is determined based on the determination crank angle.
摘要:
A stress measurement device includes a current supply portion; a series circuit which is connected to the current supply portion and has a piezoresistive element that forms a single gauge resistance and a compensating diode that is connected in series to the piezoresistive element; and a voltage measuring portion that measures voltage between both ends of the series circuit. The single gauge resistance has a piezoresistive effect in which a resistance value changes according to applied stress, and a positive temperature characteristic in which the resistance value increases depending on an increase in temperature. The compensating diode is provided in a forward direction with respect to the current supply portion and has a negative temperature characteristic in which a voltage between an anode and a cathode of the compensating diode decreases depending on the increase in temperature.
摘要:
An object of this invention is to accurately detect a sensitivity abnormality of an in-cylinder pressure sensor over a wide operating range without using other sensor outputs or the like. Based on only the output of an in-cylinder pressure sensor 44, an ECU 50 acquires a first parameter that is affected by an output sensitivity of the sensor, and a second parameter that is not affected by the output sensitivity. Specifically, the ECU 50 acquires a heat release quantity PVκ as the first parameter, and acquires an indicated torque ratio (A2/A1) as a second parameter. The ECU 50 also calculates a determination coefficient α that is a ratio between the first and second parameters, and determines that the output sensitivity of the in-cylinder pressure sensor 44 is abnormal when the determination coefficient α deviates from an allowable range. Thus, even without utilizing another sensor output or the like in an auxiliary manner or previously preparing a large amount of data or the like, a sensitivity abnormality of the in-cylinder pressure sensor 44 can be easily detected over a wide operating range.
摘要:
An ink jet recording paper ensuring high image qualities and a method of producing the same. The paper has excellent ink receptivity, ink dryness, image density, color reproduction and image brightness. The paper is free from the strike through of Ink. The paper does not produce paper dust which affects the performance of the recording apparatus. The paper comprises a substrate and an ink receptive image-receiving layer thereon, the image-receiving layer being formed by coating or saturating the substrate with an aqueous coating composition, the improvement comprising the substrate satisfying the following two conditions at the same time:(1) The substrate contains a porous pigment in an amount of 6 to 20% by weight, the pigment having an apparent specific gravity under JIS-K-6220 of 0.10 to 0.50 g/cm.sup.3.(2) The initial angle of contact .theta. of the surface of the substrate with water is 45.degree. to 100.degree..
摘要翻译:一种确保高图像质量的喷墨记录纸及其制造方法。 该纸具有优异的油墨接受性,油墨干燥度,图像浓度,色彩还原和图像亮度。 该纸没有墨水的打击。 纸张不会产生影响记录设备性能的纸屑。 该纸包括基板和其上的墨接受图像接收层,图像接收层通过用水性涂料组合物涂布或饱和基板形成,改进包括同时满足以下两个条件的基材:( 1)基材含有6〜20重量%的多孔颜料,JIS-K-6220的表观比重为0.10〜0.50g / cm 3的颜料。 (2)底物表面与水的初始接触角θ为45°〜100°。
摘要:
An object of this invention is to accurately detect a sensitivity abnormality of an in-cylinder pressure sensor over a wide operating range without using other sensor outputs or the like. Based on only the output of an in-cylinder pressure sensor 44, an ECU 50 acquires a first parameter that is affected by an output sensitivity of the sensor, and a second parameter that is not affected by the output sensitivity. Specifically, the ECU 50 acquires a heat release quantity PVκ as the first parameter, and acquires an indicated torque ratio (A2/A1) as a second parameter. The ECU 50 also calculates a determination coefficient α that is a ratio between the first and second parameters, and determines that the output sensitivity of the in-cylinder pressure sensor 44 is abnormal when the determination coefficient α deviates from an allowable range. Thus, even without utilizing another sensor output or the like in an auxiliary manner or previously preparing a large amount of data or the like, a sensitivity abnormality of the in-cylinder pressure sensor 44 can be easily detected over a wide operating range.