Abstract:
In a fuel pump that includes a pump housing (10) that has fuel passages (11a, 11b), a plunger (17) that is movably housed in the pump housing (10), a fuel pressurizing chamber (15) that is formed in the pump housing (10) and draws in fuel via one of the fuel passages (11a) that is on the intake side of the fuel pressurizing chamber (15), pressurizes the fuel that has been drawn in, and discharges the pressurized fuel via the other fuel passage (11b) that is on the discharge side of the fuel pressure chamber (15), in response to movement of the plunger (17), and valve elements (12, 14, 16) that are arranged in the fuel passages (11a, 11b) near the fuel pressurizing chamber (15), each of the valve elements (12, 14, 16) has a reed valve body (41, 42, 43; 74, 75, 76) arranged in the fuel passage (11a) on the intake side of the fuel pressurizing chamber (15) or the fuel passage (11b) on the discharge side of the fuel pressurizing chamber (15); and an operating member (21) that applies operating force in at least one of a valve opening direction or a valve closing direction to the reed valve body (41, 42, 43; 74, 75, 76) is provided in the pump housing (10).
Abstract:
A plurality of beads protruding from an inner face of the tube are provided in such a manner that the beads are arranged at a predetermined pitch in an axial direction of the tube; and a circumference of the tube is divided at least into thirds, and the beads are aligned in a circumferential direction of the tube; and the beads aligned in the circumferential direction of the tube are provided at plural rows at the predetermined pitch in the axial direction of the tube, and the beads adjoining in the axial direction are shifted by substantially a half of a circumferential length of the bead to one another. Alternatively, the circumference of the tube is divided into parts of an even number of four or more, and the beads are aligned in the circumferential direction so as to be alternately formed in the parts of the circumference.
Abstract:
An EGR gas cooling system of the present invention includes a main cooling water circuit which circulates cooling water between an engine, a main radiator that radiates heat of the cooling water of the engine and a primary EGR cooler that cools EGR gas by the cooling water and a low temperature cooling water circuit which circulates the cooling water between the engine, a sub-radiator provided integrally with or separately from the main radiator to radiate heat in the cooling water and a secondary EGR cooler that cools the EGR gas by the cooling water. A flow rate controller which controls a flow rate of the cooling water is provided between the engine and the sub-radiator of the low temperature cooling water circuit.
Abstract:
A defect inspection method and a defect inspection apparatus accurately determine whether potential defects on a surface of a wafer are true defects, and restrains the oversight or the like of defects, permitting reliable quality assurance and accurate quality control to be achieved. The number and positions of detected potential defects are used as the parameters for determining whether potential defects are true defects. The density of potential defects is determined, and the determined density is compared with a set value to decide whether the potential defects are true defects. A surface of a wafer is captured using a differential interference microscope, and the image is processed to count the number of potential defects observed on the surface. The potential defects are detected at the spots where luminance shifts in the captured image. A spatial filter is applied to the captured image to enhance the area where the luminance shifts, and the enhanced area is binarized. This allows even adjoining potential defects to be detected without overlapping. Based on the characteristic amounts of the detected areas, it is decided whether the potential defects are true defects or noises, then the number of the true defects is counted.
Abstract:
The purpose of the present invention is to provide a polyimide film with excellent passage characteristic, especially in an automatic optical inspection system (AOI), not to mention running characteristic (easy slip characteristic) and adhesion.
Abstract:
The purpose of the present invention is to provide a polyimide film with excellent passage characteristic, especially in an automatic optical inspection system (AOI), not to mention running characteristic (easy slip characteristic) and adhesion.
Abstract:
The present invention is directed to polyamic acids comprising a diamine represented by the following formula, where m is an integer between and including any two of the following numbers 0, 1, 2, 3 and 4 and wherein n is an integer between and including any two of the following numbers 0, 1, 2, 3 and 4. The sum of m+n is equal to any integer between and including any two of the following numbers 1, 2, 3, 4, 5, 6, 7, 8.
Abstract translation:本发明涉及包含由下式表示的二胺的聚酰胺酸,其中m是包括以下任意两个数字0,1,2,3和4之间的整数,并且其中n是包括任何 以下两个数字0,1,2,3和4. m + n的和等于并包括以下任意两个数字1,2,3,4,5,6,7,8中的任何整数 。
Abstract:
Provided are a method and apparatus for inspecting a defect on a plane, such as a surface or a section, of an object to be inspected. The object is, for instance, a silicon wafer. A whole area of a plane of the object is first imaged by an optical system to gain image signals. Then, a particular region on the plane is positionally detected from the image signals. The particular region includes a blot and a defect and has a higher luminance than a remaining region on the plane. A blot is distinguishably detected from the particular region. A specified region on the plane is then subjected to a detailed inspection under a microscope. The region is set to avoid the blot even if the blot is on the region. The detailed inspection under the microscope is performed toward only the region with no blot.
Abstract:
In a fuel pump that includes a pump housing (10) that has fuel passages (11a, 11b), a plunger (17) that is movably housed in the pump housing (10), a fuel pressurizing chamber (15) that is formed in the pump housing (10) and draws in fuel via one of the fuel passages (11a) that is on the intake side of the fuel pressurizing chamber (15), pressurizes the fuel that has been drawn in, and discharges the pressurized fuel via the other fuel passage (11b) that is on the discharge side of the fuel pressure chamber (15), in response to movement of the plunger (17), and valve elements (12, 14, 16) that are arranged in the fuel passages (11a, 11b) near the fuel pressurizing chamber (15), each of the valve elements (12, 14, 16) has a reed valve body (41, 42, 43; 74, 75, 76) arranged in the fuel passage (11a) on the intake side of the fuel pressurizing chamber (15) or the fuel passage (11b) on the discharge side of the fuel pressurizing chamber (15); and an operating member (21) that applies operating force in at least one of a valve opening direction or a valve closing direction to the reed valve body (41, 42, 43; 74, 75, 76) is provided in the pump housing (10).
Abstract:
A polyimide film with advantageous handleability, flexibility, dimensional stability and heat resistance is provided. The polyimide film is characterized by block-copolymerizing an aromatic diamine component comprising 10˜25 mol % of paraphenylenediamine (a1) and 75˜90 mol % of 4,4′-diaminodiphenyl ether (a2) with an aromatic tetracarboxylic acid component consisting of 75˜99.9 mol % of pyromellitic acid dianhydride (b1) and 0.1˜25 mol % of 3,3′,4,4′-biphenyl tetracarboxylic acid dianhydride (b2). The Young's modulus, linear expansion coefficient, water absorption rate and glass transition temperature of such polyimide films can be controlled within very useful ranges.