Abstract:
In a waste-heat recovery system, a gear pump and an electric motor share a drive shaft. A pump interior portion and a motor interior portion are partitioned from each other by a shaft seal, and the pump interior portion defines a part of a circulation path of a Rankine cycle circuit. One end of a communication path that is communicated to the motor interior portion is connected to a bottom portion of a housing, and the other end of the communication path is connected to the circulation path at a position between an expander and a condenser in the Rankine cycle circuit.
Abstract:
A Rankine cycle where, in a circulation path of a working fluid, a heat exchanger exchanging heat between the working fluid and a heat medium, an expander, a condensing unit and a pumping device are provided in order, includes a temperature detector detecting the temperature of the working fluid flowing out of the heat exchanger, a pressure detector detecting the pressure of the working fluid flowing through the heat exchanger, a flow rate adjusting unit for adjusting the working fluid flow rate to the heat exchanger and a control device controlling the adjusting unit. The control device controls to change the temperature and pressure of the working fluid sucked into the expander while satisfying the relationship along the target pressure line TPL where the target pressure is set to increase the working fluid density following the increase in the working fluid temperature.
Abstract:
When a detection value of a temperature sensor exceeds a set temperature, an ECU increases an opening of a sub-port by controlling a solenoid valve, and as a result, an intake volume of an expander increases. The ECU then adjusts the mass flow rate of a coolant flowing through a boiler so that a detection value of a pressure sensor indicates a pressure as close as possible to an upper limit pressure, on condition that an upper limit temperature is not exceeded.
Abstract:
A Rankine cycle circuit is constituted by an expander, which forms a fluid machine, a condenser, a gear pump, which forms a fluid machine, and a boiler. A discharge passage is connected to a discharge chamber of a pump chamber. A branch passage is connected to the discharge passage, and a restriction passage is provided at the end of the branch passage. The restriction passage is open to an internal space K in a generator housing. An outflow passage extends through a partition wall of a center housing member and a side plate. The internal space K in which an alternator is located communicates with an outlet chamber through the outflow passage.
Abstract:
A scroll type compressor has a housing, a rotary shaft, a fixed scroll member, a movable scroll member and a rotation preventing mechanism. The rotation preventing mechanism has a movable pin that is provided on the surface of movable end plate and extends toward end surface of the housing in parallel with an axis of the rotary shaft, a fixed pin that is provided on the end surface of the housing and extends toward the surface of the movable end plate in parallel with the axis of the movable pin, a rolling element that is disposed between the movable and the fixed pins, being contactable with the movable and the fixed pins and a retainer retaining the rolling element between the movable and the fixed pins.
Abstract:
A Rankine cycle apparatus includes a circuit having a pump for working fluid, a heat exchanger for causing heat exchange between the working fluid and fluid supplied from an exhaust heat source, and an expanding portion that expands the working fluid that has been exposed to the heat exchange to produce mechanical energy. The expanding portion includes a fixed scroll, a movable scroll that orbits with respect to the fixed scroll, and a back pressure chamber arranged at the side corresponding to a backside of the movable scroll opposite to the surface facing the fixed scroll. The Rankine cycle apparatus further includes an inlet mechanism for introducing the working fluid from a high pressure zone that extends from the outlet side of the pump to the inlet of the heat exchanger to the back pressure chamber to produce back pressure that presses the movable scroll against the fixed scroll.
Abstract:
A vehicle with a Rankine cycle system and a refrigerating cycle system for air-conditioning includes a Rankine condenser forming a part of the Rankine cycle system which converts waste heat of a vehicle into power and an air-conditioning condenser forming a part of the refrigerating cycle system. The Rankine condenser and the air-conditioning condenser are disposed one above the other in the vehicle as viewed from a front of the vehicle.
Abstract:
In a heat generator for a vehicle according to the present invention, an operation chamber defined in the heat generator is composed of a heat generation area (7) which receives therein a rotor, a storage area (8) which contains viscous fluid, and a boundary opening (9) of a relatively large surface area, which connects the two areas. The boundary opening is provided with a pair of transfer openings (35A, 35B) in a point-symmetric arrangement with respect to the rotation axis C of the rotor. Guide portions (41A, 41B), each corresponding to each of the openings, are provided in the storage area. With this structure, since at least one of the transfer openings and the guide portion corresponding thereto are located below the surface level L of the viscous fluid regardless of the attachment angle of the heat generator, the exchange and circulation of the viscous fluid can be carried out between the heat generation area and the storage area, in accordance with the rotation of the rotor.
Abstract:
A vehicle heat generator, which can easily be installed in an engine room, includes a housing, and a heating chamber housed in the housing. The heating chamber contains viscous fluid. A heat transfer chamber is housed in the housing about the heating chamber. Circulating fluid flows through the heat transfer chamber. A rotor is rotatably supported in the heating chamber. The rotor shears the viscous fluid to generate heat. A flow passage of the circulating fluid is defined in the heat transfer chamber. The flow passage encompasses substantially the entire rotor. An ingoing passage connects the exterior of the housing to the flow passage. The circulating fluid flows through the ingoing passage from the exterior to the flow passage. An outgoing passage connects the flow passage to the exterior. The circulating fluid flows through the outgoing passage from the flow passage to the exterior. The ingoing passage and the outgoing passage extend substantially parallel to the rotor axis. The structure of the heat generator also facilitates movement of the viscous fluid in the heating chamber.
Abstract:
A control apparatus and method for controlling an automotive heater apparatus. The heater apparatus includes a coolant circuit for cooling an engine, a coolant circulating through the circuit, a heat generator for transferring heat to the coolant, and a heater core for transferring heat from the coolant. The heat generator houses a viscous fluid and a rotor selectively connected to and disconnected from the engine by a clutch. The clutch connects the engine with the rotor to shear the viscous fluid and generate heat. When the rotating speed of the rotor exceeds a rotor speed limit, which varies in accordance with the detected coolant temperature, the clutch disconnects the rotor of the heat generator from the engine and de-activates the heat generator.