Abstract:
A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
Abstract:
The image processing method converts an input image to a transformed image. The method includes segmenting the transformed image into multiple blocks each having multiple pixels including multiple vertex pixels; providing a memory storing at least one coordinate in the transformed image for each vertex pixel, wherein plural coordinates are stored for at least one of the vertex pixels of at least one of the blocks; determining a coordinate in the input image corresponding to a vertex pixel of a focused block by reference to the memory, wherein when plural coordinates are stored for the vertex pixel, one of the coordinates is selected; repeating the determining step for all the blocks to determine coordinates in the input image corresponding to the vertex pixels; and determining coordinates in the input image for all the pixels of the multiple blocks by performing an interpolation processing using the coordinate values determined.
Abstract:
A defect inspection apparatus includes an imaging apparatus configured to include a lens array configure to include plural lenses arranged in a form of an array, and an imaging device configured to image a compound-eye image that is a collection of ommatidium images of an object approximately formed by the respective plural lenses of the lens array; and a processing apparatus configured to process the compound-eye image obtained from imaging the object by the imaging apparatus, and determine whether there is a defect of the object.
Abstract:
A medium processing method is provided that includes the steps of inputting images of a first medium and a second medium, recognizing first area information of the first medium and second area information of the second medium, determining a correspondence between the first area information and the second area information based on the recognition result, adjusting one of the first area information or the second area information based on the determined correspondence between the first area information and the second area information, and compositing the adjusted one of the area information within a predetermined area defined by the other one of the area information.
Abstract:
A measuring apparatus and a measuring method are provided. The measuring apparatus includes an optical system to condense light, a light receiving device to receive light condensed by the optical system at a plurality of light receiving positions and convert the light into an electric signal, a plurality of optical band-pass filters arranged near a lens stop of the optical system, each of the optical band-pass filters having a different spectral transmittance, a lens array arranged between the optical system and the light receiving device, the lens array having a plurality of lenses each of which is arranged substantially in parallel with a two-dimensional surface of the light receiving device, and a correction unit to correct the electric signal for each one of the plurality of light receiving positions of the light receiving device. The measuring method is performed by the measuring apparatus.
Abstract:
A light field imaging system captures different images provide views that are shifted by sub-pixel amounts relative to one another. These views can be combined to produce a higher resolution digital image of the object.
Abstract:
The image capturing device includes an optical system that focuses lights from an object to generate optical information, a filter provided near a diaphragm position of the optical system, the filter having a plurality of types of spectral characteristics, a sensor that converts the optical information of the object to electronic data, the sensor providing a plurality of spectral transmittance values that sequentially and spatially change, and a lens array having a plurality of lenses being arranged in substantially parallel in a direction of a two-dimensional surface of the sensor.
Abstract:
An imaging device includes a filter, an imaging element, a lens, a spectral image generator, and an exposure adjuster. The filter includes a plurality of filter areas having different spectral transmission characteristics. The imaging element receives light transmitted through the filter and outputs image information. The lens array includes a plurality of lenses arranged approximately parallel to a light receiving surface of the imaging element and is arranged between the filter and the imaging element. The spectral image generator generates a plurality of spectral images respectively corresponding to the plurality of filter areas on the basis of the image information output by the imaging element. The exposure adjuster adjusts an exposure time of the imaging element on the basis of luminance values of the spectral images.
Abstract:
An image capturing device and an image capturing system are provided. The image capturing device includes an optical system, a first filter provided near a diaphragm position of the optical system, a sensor, and a lens array. The first filter includes a plurality of filters respectively having different spectral characteristics. The sensor includes a plurality of filters respectively having different spectral characteristics. The lights from an object pass through the respective filters of the first sensor and the respective filters of the second sensor to simultaneously form a plurality of types of spectral image of the object on an image plane of the sensor.
Abstract:
An imaging device includes a filter, an imaging element, a lens, a spectral image generator, and an exposure adjuster. The filter includes a plurality of filter areas having different spectral transmission characteristics. The imaging element receives light transmitted through the filter and outputs image information. The lens array includes a plurality of lenses arranged approximately parallel to a light receiving surface of the imaging element and is arranged between the filter and the imaging element. The spectral image generator generates a plurality of spectral images respectively corresponding to the plurality of filter areas on the basis of the image information output by the imaging element. The exposure adjuster adjusts an exposure time of the imaging element on the basis of luminance values of the spectral images.