Abstract:
An angulation device for a flexible-type endoscope comprising an angulation body with a first angulation portion linked to a second angulation portion, said first and second angulation portion being articulated and defining a relative back-and-forth movement therebetween, causing a bending portion of the endoscope to be angled; it being possible for said angulation device to be in combination with a control device for peripheral elements of an endoscope comprising a plurality of electromyography sensors and another control device comprising a plurality of buttons arranged around a crown; it being possible for said devices to be in combination with an endoscopy supply tower that comprises processing means and at least one peripheral element, and an output linked to the peripheral element and said output being connectable to a conduit of the endoscope linked to an insertion tube.
Abstract:
A dynamically variable lens is made from actively tunable electromagnetic metamaterial cells. The lens operates on electromagnetic radiation including: radio frequency waves, microwaves, teraherz waves, near infrared waves, infrared waves and visible waves. The focal length of the lens is changed at a selected frequency. In the alternative, the frequency of radiation operated on is changed as a function of time. A third alternative provides precise control of the index of refraction of the lens. The index of refraction is varied progressively across the lens from one edge to the opposite edge causing the radiation to be directed at an angle.
Abstract:
Carbon nanotube apparatus, and methods of carbon nanotube modification, include carbon nanotubes having locally modified properties with the positioning of the modifications being controlled. More specifically, the positioning of nanotubes on a substrate with a deposited substance, and partially vaporizing part of the deposited substance etches the nanotubes. The modifications of the carbon nanotubes determine the electrical properties of the apparatus and applications such as a transistor or Shockley diode. Other applications of the above mentioned apparatus include a nanolaboratory that assists in study of merged quantum states between nanosystems and a macroscopic host system.
Abstract:
This invention is related to the Molecular Pharmacology field and especially to the development of peptides useful for treating epithelial tumors and mainly those associated to oncogenic types of HPVs. The main objective of this invention is to identify peptides whose structure permits to block the Casein Kinase II (CKII) phosphorylation domain by direct interaction with such a site. In the present invention it is shown eleven cyclic peptides with different aminoacid sequences which inhibit the CKII phosphorylation in vitro, exhibit cytotoxicity on HPV-16 transformed cells (CaSki) and also increase the sensitivity of these cells to the cytostatic effect of interferon (IFN). Furthermore, the invention relates to the use of these peptides conjugated or fused to other peptides and chemical compounds which penetrates into cells as well as with the use of both peptide and chemical mimetic molecules.
Abstract:
An epitaxial barrier material provides not only a unique growth medium for growing single crystal structures of elemental metal thereon, but also provides an effective diffusion barrier at extremely thin thicknesses against migration of atoms from the metallization layer into an adjacent semiconductor substrate or low dielectric insulation layer. This invention is particularly advantageous for forming single crystal, transition metal conductor lines, contacts, filled trenches, and/or via plugs, and especially conductor structures based on transition metals of copper, silver, gold, or platinum. These metals are highly attractive for interconnect strategies on account of there respective low resistivity and high reliability characteristics. Processes for making the barrier film in a semiconductor device are also covered. The capability to use copper interconnect strategies coupled with the proviso of an extremely thin barrier film makes possible a significant increase in the component density and a corresponding reduction in the number of layers in large scale integrated circuits, as well as improved performance.
Abstract:
A semiconductor device having a barrier film comprising an extremely thin film formed of one or more monolayers each comprised of a two-dimensional array of metal atoms. In one exemplary aspect, the barrier film is used for preventing the diffusion of atoms of another material, such as a copper conductor, into a substrate, such as a semiconducting material or an insulating material. In one mode of making the semiconductor device, the barrier film is formed by depositing a precursor, such as a metal halide (e.g., BaF2), onto the substrate material, and then annealing the resulting film on the substrate material to remove all of the constituents of the temporary heteroepitaxial film except for a monolayer of metal atoms left behind as attached to the surface of the substrate. A conductor, such as copper, deposited onto the barrier film is effectively prevented from diffusing into the substrate material even when the barrier film is only one or several monolayers in thickness. The extremely thin barrier film makes possible a significant increase in the component density and a corresponding reduction in the number of layers in large scale integrated circuits, as well as improved performance.
Abstract:
A semiconductor device having a barrier film comprising an extremely thin film formed of one or more monolayers each comprised of a two-dimensional array of metal atoms, in which more than one type of metal atom is provided in barrier film. In one exemplary aspect, the barrier film is used for preventing the diffusion of atoms of another material, such as a copper conductor, into a substrate, such as a semiconducting material or an insulating material. In one mode of making the semiconductor device, the barrier film is formed by depositing different types of precursors, such as metal halides (e.g., BaF2 and SrF2), onto the substrate material, and then annealing the resulting film on the substrate material to remove all of the constituents of the temporary heteroepitaxial film except for a monolayer of metal atoms left behind as attached to the surface of the substrate. A conductor, such as copper, deposited onto the barrier film is effectively prevented from diffusing into the substrate material even when the barrier film is only one or several monolayers in thickness. The extremely thin barrier film makes possible a significant increase in the component density and a corresponding reduction in the number of layers in large scale integrated circuits, as well as improved performance.
Abstract:
An insulator layer for single crystal gallium arsenide substrates in which the insulator layer is compliantly matched with the substrate and the insulator layer is free of defects causing surface roughness and crystalline defect problems which, otherwise, could impair device performance. To accomplish this, the insulator layer is formed on a gallium arsenide substrate as an integral composite or variegated structure including (a) a uniform homogenous film of Group IIa metal atoms attached directly onto a gallium arsenide substrate surface in the form of a monolayer, and (b) a single crystal epitaxial film of a Group IIa metal fluoride deposited on the monolayer.
Abstract:
Process for making a semiconductor device having a barrier film comprising an extremely thin film formed of one or more monolayers each comprised of a two-dimensional array of metal atoms. In one exemplary aspect, the barrier film is used for preventing the diffusion of atoms of another material, such as a copper conductor, into a substrate, such as a semiconducting material or an insulating material. In one mode of making the semiconductor device, the barrier film is formed by depositing a metal halide as a precursor (e.g., BaF.sub.2 or SrF.sub.2), onto the substrate material, and then annealing the resulting film on the substrate material to remove all of the constituents of a temporary heteroepitaxial film except for a monolayer of metal atoms left behind as attached to the surface of the substrate. A conductor, such as copper, deposited onto the barrier film is effectively prevented from diffusing into the substrate material even when the barrier film is only one or several monolayers in thickness. The extremely thin barrier film makes possible a significant increase in the component density and a corresponding reduction in the number of layers in large scale integrated circuits, as well as improved performance.
Abstract:
This invention is related to the Molecular Pharmacology field and especially to the development of peptides useful for treating epithelial tumors and mainly those associated to oncogenic types of HPVs. The main objective of this invention is to identify peptides whose structure permits to block the Casein Kinase II (CKII) phosphorylation domain by direct interaction with such a site. In the present invention it is shown eleven cyclic peptides with different aminoacid sequences which inhibit the CKII phosphorylation in vitro, exhibit cytotoxicity on HPV-16 transformed cells (CaSki) and also increase the sensitivity of these cells to the cytostatic effect of interferon (IFN). Furthermore, the invention relates to the use of these peptides conjugated or fused to other peptides and chemical compounds which penetrates into cells as well as with the use of both peptide and chemical mimetic molecules.