摘要:
Power gating a portion of a graphics processor may be used to improve performance or to achieve a power budget. A processor granularity, such as a slice or subslice, may be gated.
摘要:
Examples are disclosed for adjusting a performance state of a graphics subsystem and/or a processor based on a comparison of an average frame rate to a target frame rate and also based on whether the graphics subsystem is in a burst mode or sustained mode of operation.
摘要:
A processor is described that includes a plurality of execution cores. The processor also includes power management circuitry to dynamically determine a number of the execution cores that, when active, will cause the processor to operate in a substantially linear power consumption vs. frequency region of operation such that performance gain as a function of power consumption increase with the number of cores is higher as compared to any other number of active execution cores within an established power envelope.
摘要:
In one embodiment, the present invention includes a method for determining that a non-core domain of a multi-domain processor is not operating at a frequency requested by the non-core domain, sending a request from the non-core domain to a power controller to reduce a frequency of a core domain of the multi-domain processor, and responsive to the request, reducing the core domain frequency. Other embodiments are described and claimed.
摘要:
Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.
摘要:
A processor is provided with a workload that has a real-time demand. A processor clock frequency requirement is set for the processor, based on a deadline margin for the real-time demand. Other embodiments are also described and claimed.
摘要:
A method includes detecting a trigger condition, and in response to detecting the trigger condition, reducing a voltage applied to a graphics controller component of a memory controller. The reduction in voltage may cause the voltage to be reduced below a voltage level required to maintain context information in the graphics controller component.
摘要:
Systems and methods of managing power provide for placing a processor in a non-snoopable state, where the processor is associated with a system memory. One or more data transfers between a controller and the system memory can be serviced while the processor is in the non-snoopable state. In one embodiment, it is determined that the processor has flushed an internal cache of the processor to the system memory before placing the processor in the non-snoopable state.
摘要:
Embodiments of the present invention provide a method and apparatus for conserving power in an electronic device. In particular, embodiments of the present invention dynamically place the memory in self-refresh and chipset clock circuits in power down mode while keeping the isochronous streams (such as display) updated and servicing bus master cycles in a power savings mode.
摘要:
Embodiments of systems, apparatuses, and methods for energy efficiency and energy conservation including enabling autonomous hardware-based deep power down of devices are described. In one embodiment, a system includes a device, a static memory, and a power control unit coupled with the device and the static memory. The system further includes a deep power down logic of the power control unit to monitor a status of the device, and to transfer the device to a deep power down state when the device is idle. In the system, the device consumes less power when in the deep power down state than in the idle state.