Abstract:
A system and method for planning, manipulating, processing and editing DNA molecules utilizing a core operation on a given input DNA molecule to produce a targeted DNA molecule.
Abstract:
A method for manufacturing synthetic genes and combinatorial DNA and protein libraries, termed here Divide and Conquer-DNA synthesis (D&C-DNA synthesis) method. The method can be used in a systematic and automated way to synthesize any long DNA molecule and, more generally, any combinatorial molecular library having the mathematical property of being a regular set of strings. The D&C-DNA synthesis method is an algorithm design paradigm that works by recursively breaking down a problem into two or more sub-problems of the same type. The division of long DNA sequences is done in silico. The assembly of the sequence is done in vitro. The D&C-DNA synthesis method protocol consists of a tree, in which each node represents an intermediate sequence. The internal nodes are created in elongation reactions from their daughter nodes, and the leaves are synthesized directly. After each elongation only one DNA strand passes to the next level in the tree until receiving the final product. Optionally and preferably, error correction is performed to correct any errors which may have occurred during the synthetic process.
Abstract:
To facilitate the comparison of strings in logic programming, a hash code is added to each string having a value that depends on the contents of the string. Typically, this hash code is made part of the header for the string along with a string identification number, a number specifying the length of the string and a bit specifying whether the string is a run time string or a compile time string.
Abstract:
A method for manufacturing synthetic genes and combinatorial DNA and protein libraries, termed here Divide and Conquer-DNA synthesis (D&C-DNA synthesis) method. The method can be used in a systematic and automated way to synthesize any long DNA molecule and, more generally, any combinatorial molecular library having the mathematical property of being a regular set of strings. The D&C-DNA synthesis method is an algorithm design paradigm that works by recursively breaking down a problem into two or more sub-problems of the same type. The division of long DNA sequences is done in silico. The assembly of the sequence is done in vitro. The D&C-DNA synthesis method protocol consists of a tree, in which each node represents an intermediate sequence. The internal nodes are created in elongation reactions from their daughter nodes, and the leaves are synthesized directly. After each elongation only one DNA strand passes to the next level in the tree until receiving the final product. Optionally and preferably, error correction is performed to correct any errors which may have occurred during the synthetic process.
Abstract:
A system and method for planning, manipulating, processing and editing DNA molecules utilizing a core operation on a given input DNA molecule to produce a targeted DNA molecule.
Abstract:
A method of generating a cell lineage tree of a plurality of cells of an individual is provided. The method comprising: (a) determining at least one genotypic marker for each cell of the plurality of cells; and (b) computationally clustering data representing the at least one genotypic marker to thereby generate the cell lineage tree of the plurality of cells of the individual.
Abstract:
Methods of determining clonality of a cell culture are provided. Also provided are systems employing the above methods in high throughput sample screening.
Abstract:
A suspension list is maintained for each variable on which one or more processes has been suspended because the variable is uninstantiated. The suspension list for each variable is a circular list of suspension records, each record in the list being associated indirectly with one process that is suspended because that variable is uninstantiated. Each record comprises a first pointer to a memory address or register (called a "hanger") at which is stored the address of the process record for the suspended process and a second pointer that points to the memory address of the next record in the suspension list. Since. the same process can be suspended on different variables, it can happen that records in more than one suspension list point to the same hanger at which is stored the address of the process record for that process. If a variable is subsequently instantiated, each record in the suspension list associated with that variable is used to identify one of the processes that has been suspended on that variable. Accordingly each such process can then be enqueued in the process queue. At the same time, as each process is identified by the record in the suspension list, the address of the process record that is stored in the hanger is reset, illustratively, to zero. As a result, if at a later time another variable is instantiated and the suspension list for that variable also contains a record that points to the same hanger, the hanger will be found to point to its reset value rather than the address of the process record. Consequently, the process will not be identified a second time and will not be enqueued again in the process queue.
Abstract:
A method of generating a cell lineage tree of a plurality of cells of an individual is provided. The method comprising: (a) determining at least one genotypic marker for each cell of the plurality of cells; and (b) computationally clustering data representing the at least one genotypic marker to thereby generate the cell lineage tree of the plurality of cells of the individual.