摘要:
A semiconductor transistor with an expanded top portion of a gate and a method for forming the same. The semiconductor transistor with an expanded top portion of a gate includes (a) a semiconductor region which includes a channel region and first and second source/drain regions; the channel region is disposed between the first and second source/drain regions, (b) a gate dielectric region in direct physical contact with the channel region, and (c) a gate electrode region which includes a top portion and a bottom portion. The bottom portion is in direct physical contact with the gate dielectric region. A first width of the top portion is greater than a second width of the bottom portion. The gate electrode region is electrically insulated from the channel region by the gate dielectric region.
摘要:
A system for configuring and utilizing J electromagnetic radiation sources (J≧2) to serially irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2; J≦I) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. In each of I independent exposure steps, the I stacks are concurrently exposed to radiation from the J sources. Vi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i in exposure step i (i=1, . . . , I). t(i) and Pt(i) are computed such that: Vi is maximal through deployment of source t(i) as compared with deployment of any other source for i=1, . . . , I; and an error E being a function of |V1−S1|, |V2−S2|, . . . , |VI−SI| is about minimized with respect to Pi (i=1, . . . , I).
摘要:
A structure formation method. First, a structure is provided including (a) a fin region comprising (i) a first source/drain portion having a first surface and a third surface parallel to each other, not coplanar, and both exposed to a surrounding ambient, (ii) a second source/drain portion having a second surface and a fourth surface parallel to each other, not coplanar, and both exposed to the surrounding ambient, and (iii) a channel region disposed between the first and second source/drain portions, (b) a gate dielectric layer, and (c) a gate electrode region, wherein the gate dielectric layer (i) is sandwiched between, and (ii) electrically insulates the gate electrode region and the channel region. Next, a patterned covering layer is used to cover the first and second surfaces but not the third and fourth surfaces. Then, the first and second source/drain portions are etched at the third and fourth surfaces, respectively.
摘要:
A method for configuring J electromagnetic radiation sources (J≧2) to simultaneously irradiate a substrate. Each source has a different function of wavelength and angular distribution of emitted radiation. The substrate includes a base layer and I stacks (I≧2) thereon. Pj denotes a same source-specific normally incident energy flux on each stack from source j. For simultaneous exposure of the I stacks to radiation from the J sources, Pj is computed such that an error E being a function of |W1−S1|, |W2−S2, . . . , |WI−SI| is about minimized with respect to Pj=1, . . . , J). Wi and Si respectively denote an actual and target energy flux transmitted into the substrate via stack i (i=1, . . . , I). The stacks are exposed to the radiation from the sources characterized by the computed Pj (j=1, . . . , J).
摘要:
A semiconductor structure. The structure includes (a) a fin region having (i) a first source/drain portion having a first surface and a third surface, wherein the first and third surfaces are (A) parallel to each other and (B) not coplanar, (ii) a second source/drain portion having a second surface and a fourth surface, wherein the second and fourth surfaces are (A) parallel to each other and (B) not coplanar, and (iii) a channel region; (b) a gate dielectric layer; (c) a gate electrode region, wherein the gate dielectric layer (i) is sandwiched between, and (ii) electrically insulates the gate electrode region and the channel region; and (d) first second strain creating regions on the third and fourth surfaces, respectively, wherein the first and second strain creating regions comprise a strain creating material.
摘要:
An article of manufacture, for example, a product or portion of a product produced by an IP design house which, when manufactured, causes random failures in a counterfeit integrated circuit. The article of manufacture (520) is a “genetic code” that comprises all of the necessary functional information needed to build an electronic circuit. This article of manufacture, when processed in a computer-aided design system and/or a fabrication facility, generates a functional apparatus such as an anti-counterfeiting circuit.
摘要:
A design structure for an anti-counterfeiting circuit that is incorporated into an authentic integrated circuit (IC) design, which induces a random failure in a counterfeited IC when the counterfeit IC is manufactured from a reverse-engineered authentic IC. The anti-counterfeiting circuit uses two signals of differing frequencies, which activate a disrupt signal when the two signals meet a predetermined failure criteria, for example, equivalent rising edges. The disrupt signal causes a signal gate or similar element within the counterfeited IC to fail, disrupt, or in some way change a designed behavior of the IC. The disrupt signal may be reset so that the failure will occur again when predetermined failure criteria are met. The authentic IC functions according to design because at least one of the elements in the anti-counterfeit circuit is a camouflage circuit, thus, in an authentic IC the anti-counterfeit circuit is not operatively coupled.
摘要:
A spacer structure for FinFETs. The structure includes (a) a substrate, (b) a semiconductor fin region on top of the substrate, (c) a gate dielectric region on side walls of the semiconductor fin region, and (d) a gate electrode region on top and on side walls of the semiconductor fin region. The gate dielectric region (i) is sandwiched between and (ii) electrically insulates the gate electrode region and the semiconductor fin region. The structure further includes a first spacer region on a first side wall of the gate electrode region. A first side wall of the semiconductor fin region is exposed to a surrounding ambient. A top surface of the first spacer region is coplanar with a top surface of the gate electrode region.
摘要:
An apparatus for biasing ultra-low voltage logic circuits is disclosed. An integrated circuit device includes multiple transistors and a global body bias circuit. The global body bias circuit includes a first transistor and second transistors connected in series between a power supply and a second power supply or ground. The gate and source of the first transistor are connected to the first power supply. The gate and source of the second transistor are connected to the second power supply. The drains and bodies of the first and second transistors are connected together to form an output connected to the bodies of the other transistors within the integrated circuit device.
摘要:
Described is a dynamic threshold field effect transistor (DTFET) that includes a gate-to-body contact structure within the gate. By forming the gate-to-body contact structure that can reduce the gate-to-body contact resistance and increase the device packing density, the DTFET can be used in silicon on insulator (SOI) technologies and take full advantages of the DT-CMOS performance benefit.