摘要:
A conductive via of a semiconductor device is provided extending in a vertical direction through a substrate, a first end of the conductive via extending through a first surface of the substrate, so that the first end protrudes in the vertical direction relative to the first surface of the substrate. An insulating layer is provided on the first end of the conductive via and on the first surface of the substrate. An upper portion of a mask layer pattern is removed so that a capping portion of the insulating layer that is on the first end of the conductive via is exposed. A portion of the insulating layer at a side of, and spaced apart from, the conductive via, is removed, to form a recess in the insulating layer. The capping portion of the insulating layer on the first end of the conductive via is simultaneously removed.
摘要:
A semiconductor device includes a substrate including a first surface and a second surface opposite to each other, a through-via electrode extending through the substrate. The through-via electrode has an interconnection metal layer and a barrier metal layer surrounding a side surface of the interconnection metal layer. One end of the through-via electrode protrudes above the second surface. A spacer insulating layer may be provided on an outer sidewall of the through-via electrode. A through-via electrode pad is connected to the through-via electrode and extends on the spacer insulating layer substantially parallel to the second surface. A first silicon oxide layer and a silicon nitride layer are stacked on the second surface. A thickness of the first silicon oxide layer is greater than a thickness of the silicon nitride layer.
摘要:
Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other.
摘要:
The methods include forming a semiconductor substrate pattern by etching a semiconductor substrate. The semiconductor pattern has a first via hole that exposes side walls of the semiconductor substrate pattern, and the side walls of the semiconductor substrate pattern exposed by the first via hole have an impurity layer pattern. The methods further include treating upper surfaces of the semiconductor substrate pattern, the treated upper surfaces of the semiconductor substrate pattern being hydrophobic; removing the impurity layer pattern from the side walls of the semiconductor substrate pattern exposed by the first via hole; forming a first insulating layer pattern on the side walls of the semiconductor substrate pattern exposed by the first via hole; and filling a first conductive layer pattern into the first via hole and over the first insulating layer pattern.
摘要:
Provided according to embodiments of the present invention are an oxidation-promoting compositions, methods of forming oxide layers, and methods of fabricating semiconductor devices. In some embodiments of the invention, the oxidation-promoting composition includes an oxidation-promoting agent having a structure of A-M-L, wherein L is a functional group that is chemisorbed to a surface of silicon, silicon oxide, silicon nitride, or metal, A is a thermally decomposable oxidizing functional group, and M is a moiety that allows A and L to be covalently bonded to each other.
摘要:
A photoelectric integrated circuit device may include a substrate including an electronic device region and an on die optical input/output device region, the substrate having a trench in the on die optical input/output device region; a lower clad layer provided in the trench, the lower clad layer having an upper surface lower than a surface of the substrate; a core provided on the lower clad layer; an insulating pattern provided on the core; an optical detection pattern provided on the insulating pattern, the optical detection pattern having at least a portion provided in the trench; and at least one transistor provided on the substrate of the electronic device region.
摘要:
For forming a semiconductor device, a via structure is formed through at least one dielectric layer and at least a portion of a substrate. In addition, a protective buffer layer is formed onto the via structure. Furthermore, a conductive structure for an integrated circuit is formed over the substrate after forming the via structure and the protective buffer layer, with the conductive structure not being formed over the via structure. Thus, deterioration of the conductive and via structures is minimized.
摘要:
A photocurrent sensing circuit having a stabilized feedback loop comprises a photocurrent generator including a photodiode generating the photocurrent in proportion to an amount of incident light and applying the photocurrent to an output node, a switching unit applying the photocurrent applied to a control node to a voltage-generating capacitor when a shutter signal is in a first state, and applying a predetermined current to the control node when the shutter signal is in a second state, and a circuit stabilizer applying the photocurrent applied to the output node to the control node, and always forming a feedback loop of the photodiode through the photocurrent applied to the output node, wherein the circuit stabilizer comprises a first NMOS transistor forming the feedback loop of the photodiode in response to the photocurrent input to the output node when the predetermined current is applied to the control node, breaking the feedback loop and applying the photocurrent applied to the output node to the control node when the predetermined current is not applied to the control node, a second NMOS transistor always forming the feedback loop of the photodiode in response to the photocurrent applied to the output node, and a third NMOS transistor connected to the first and second transistors and the photodiode, and providing a current path for forming the feedback loop.
摘要:
An electrical touch sensor is provided. The electrical touch sensor includes: a touch detection part having at least one touch pad and generating a first signal having a same delay time regardless of whether the object is in contact with the touch pad and a second signal having a varied delay time according to whether the object is in contact with the touch pad; and a contact signal generator generating a contact signal in response to the delay time-difference between the first and second signals. Therefore, it is possible to increase operation reliability by precisely determining whether the object is in contact with the pad, when the object has charge accumulation characteristics more than a certain level, although its conductive is insufficient. In addition, the electrical touch sensor can determine whether the object is in contact with the pad using only one pad to reduce a layout area of a product.
摘要:
A semiconductor device includes a substrate including a first surface and a second surface opposite to each other, a through-via electrode extending through the substrate. The through-via electrode has an interconnection metal layer and a barrier metal layer surrounding a side surface of the interconnection metal layer. One end of the through-via electrode protrudes above the second surface. A spacer insulating layer may be provided on an outer sidewall of the through-via electrode. A through-via electrode pad is connected to the through-via electrode and extends on the spacer insulating layer substantially parallel to the second surface. A first silicon oxide layer and a silicon nitride layer are stacked on the second surface. A thickness of the first silicon oxide layer is greater than a thickness of the silicon nitride layer.