Abstract:
Optical input/output (I/O) devices, which include a substrate including a trench, a waveguide within the trench of the substrate; and a photodetector within the trench and optically connected to the waveguide. An upper surface of the photodetector is at a same level as an upper surface of the waveguide.
Abstract:
Optical waveguide and coupler devices and methods include a trench formed in a bulk semiconductor substrate, for example, a bulk silicon substrate. A bottom cladding layer is formed in the trench, and a core region is formed on the bottom cladding layer. A reflective element, such as a distributed Bragg reflector can be formed under the coupler device and/or the waveguide device. Because the optical devices are integrated in a bulk substrate, they can be readily integrated with other devices on a chip or die in accordance with silicon photonics technology. Specifically, for example, the optical devices can be integrated in a DRAM memory circuit chip die.
Abstract:
A semiconductor device includes a via structure having a top surface with a planar portion and a protrusion portion that is surrounded by the planar portion, and includes a conductive structure including a plurality of conductive lines contacting at least a part of the top surface of the via structure.
Abstract:
A photo-electric integrated circuit device comprises an on-die optical input/output device. The on-die optical input/output device comprises a substrate having a trench, a lower cladding layer disposed in the trench and having an upper surface lower than an upper surface of the substrate, and a core disposed on the lower cladding layer at a distance from sidewalls of the trench and having an upper surface at substantially the same level as the upper surface of the substrate.
Abstract:
A semiconductor device includes a via structure and a conductive structure. The via structure has a surface with a planar portion and a protrusion portion. The conductive structure is formed over at least part of the planar portion and not over at least part of the protrusion portion of the via structure. For example, the conductive structure is formed only onto the planar portion and not onto any of the protrusion portion for forming high quality connection between the conductive structure and the via structure.
Abstract:
Methods of fabricating a semiconductor device include forming a mask pattern on a semiconductor substrate and which exposes defined regions of the semiconductor substrate. Oxygen ions are implanted into the defined regions of the semiconductor substrate using the mask pattern as an ion implantation mask. The oxygen ion implanted regions of the semiconductor substrate are annealed at one or more temperatures in a range that is sufficiently high to form silicon oxide substantially throughout the oxygen ion implanted regions by reacting the implanted oxygen ions with silicon in the oxygen ion implanted regions, and that is sufficiently low to substantially prevent oxidation of the semiconductor substrate adjacent to the oxygen ion implanted regions.
Abstract:
Provided is a method of fabricating a semiconductor wafer. The method includes preparing a substrate wafer having a non-single-crystalline thin layer; disposing at least one single crystalline pattern adjacent to the non-single-crystalline thin layer on the substrate wafer; and forming a material layer contacting the single crystalline pattern on the non-single-crystalline thin layer.
Abstract:
A semiconductor device includes a via structure and a conductive structure. The via structure has a surface with a planar portion and a protrusion portion. The conductive structure is formed over at least part of the planar portion and not over at least part of the protrusion portion of the via structure. For example, the conductive structure is formed only onto the planar portion and not onto any of the protrusion portion for forming high quality connection between the conductive structure and the via structure.
Abstract:
A conductive layer buried-type substrate is disclosed. The substrate includes a silicon oxidation layer bonded to a supporting substrate, an adhesion promotion layer that is formed on the silicon oxidation layer and improves an adhesion between the silicon oxidation layer and a conductive layer, wherein the conductive layer is formed on the adhesion promotion layer and comprises a metal layer, and a single crystal semiconductor layer formed on the conductive layer.
Abstract:
A wafer temporary bonding method using silicon direct bonding (SDB) may include preparing a carrier wafer and a device wafer, adjusting roughness of a surface of the carrier wafer, and combining the carrier wafer and the device wafer using the SDB. Because the method uses SDB, instead of an adhesive layer, for a temporary bonding process, a module or process to generate and remove an adhesive is unnecessary. Also, a defect in a subsequent process, for example, a back-grinding process, due to irregularity of the adhesive may be prevented.