Abstract:
The present invention relates to an emission control system for reducing gases from the exhaust of a combustion process. In at least one embodiment, the emission control system includes an exhaust passage for transporting the exhaust from the combustion process; a reductant disposed within exhaust passage downstream of the combustion process, and an integrated particulate filter and selective catalytic reduction unit disposed downstream of the reductant, with the unit having a first selective catalytic reduction catalyst disposed within a first inner wall portion of the exhaust passage; and a particulate filter disposed within a second inner wall portion of the exhaust passage downstream of the first inner wall portion. In at least one particular embodiment, the particulate fileter is coated with a second selective catalytic reduction catalyst.
Abstract:
Methods and systems for controlling and/or diagnosing an emission control system of a vehicle having a first SCR region upstream of a second SCR region are provided herein. One exemplary method includes, indicating degradation based on a first SCR region performance during a first condition; and indicating degradation based on a second SCR region performance during a second condition, the first condition different than the second condition. In this way, different levels of degradation among different SCR regions may be used to indicate emissions levels have increased above a threshold value, for example.
Abstract:
According to one aspect of the present invention, a catalyst assembly is provided for treating an exhaust from an engine. In one embodiment, the catalyst assembly includes a first catalyst material catalytically active at a first temperature and loaded at a first catalyst material loading, the first catalyst material including a first base metal loading, and a second catalyst material catalytically active at a second temperature lower than the first temperature and loaded at a second catalyst material loading, the second catalyst material including a second base metal loading, wherein the second base metal loading is higher than the first base metal loading.
Abstract:
Systems and methods for reducing NOx emissions using a branched exhaust system with a first and second turbine including an emission-control device containing a zeolite, are described. In one example approach, a method comprises: during a first duration when exhaust temperature is below a first temperature threshold, directing exhaust gas through the second turbine and the emission-control device, and adjusting the second turbine to control intake boost; and during a second duration following the first, directing exhaust gas through the first turbine, and adjusting the first turbine to control intake boost. The emission-control device may be purged when exhaust temperature is above a second temperature threshold higher than the first temperature threshold, where during the second duration exhaust gas does not flow through the emission-control device.
Abstract:
According to one aspect of the present invention, there is provided a multi-functional catalyst block for reducing waste materials in the exhaust from a combustion engine. In one embodiment, the multi-functional catalyst block includes a substrate, a urea-hydrolyzing catalyst supported on the substrate, and a selective catalytic reduction (SCR) catalyst supported on the substrate. In another embodiment, the substrate is a wall-flow monolith configured as a particulate filter. In yet another embodiment, the substrate is a flow-through monolith.
Abstract:
According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.
Abstract:
A system and a method for effective NOx and particulate matter control in a diesel or other lean burn internal combustion engine is presented. The system includes a urea-based SCR catalyst having an oxidation catalyst coupled upstream of it and a particulate filter coupled downstream of the SCR catalyst. The particulate filter regeneration method teaches controlling operating conditions to bring the particulate filter temperature in the range where exothermic reaction between hydrocarbon and oxygen occurs. Once this is accomplished, extra hydrocarbons are injected into the exhaust gas entering the particulate filter where they combust and the resulting exotherm regenerates the filter. This method achieves effective particulate matter control while eliminating the risk of thermal damage to the upstream devices and minimizing regeneration fuel economy penalty.
Abstract:
Methods and systems are provided for passive regeneration of a particulate matter filter coupled to a gasoline engine. During vehicle deceleration conditions, an engine is operated leaner than stoichiometry over two subsequent lean phases, including an initial longer and leaner phase followed by a shorter and less lean phase. By passively regenerating the filter using intermittent lean engine operation, engine performance can be improved.
Abstract:
According to at least one aspect of the present invention, a urea-resistant catalytic unit is provided. In at least one embodiment, the catalytic unit includes a catalyst having a catalyst surface, and a urea-resistant coating in contact with at least a portion of the catalyst surface, wherein the urea-resistant coating effectively reduces urea-induced deactivation of the catalyst. In at least another embodiment, the urea-resistant coating includes at least one oxide from the group consisting of titanium oxide, tungsten oxide, zirconium oxide, molybdenum oxide, aluminum oxide, silicon dioxide, sulfur oxide, niobium oxide, molybdenum oxide, yttrium oxide, nickel oxide, cobalt oxide, and combinations thereof.
Abstract:
Systems and methods are provided for reducing NOx emissions from a vehicle including an engine having an exhaust. In one example, the system comprises a NOx reducing system coupled to the engine exhaust including a base metal zeolite, said NOx reducing system including a first layer with a first pore size and a second layer with a second pore size, said first pore size being smaller than said second pore size.