Abstract:
The present invention provides a process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the starting gases comprising a hydrocarbon-containing stream and an oxygen-containing stream and then mixing them in a mixing zone and, after they have flowed through the burner block, reacting them in the firing space and then cooling the products rapidly, wherein the surface on the firing space side of the burner block is covered with a purge gas stream and this purge gas stream is introduced through the burner block by means of several bores, where the averaged ratio of effective surface area of the burner block to number of these bores in the burner block for the purge gas stream is within a range from 5 to 100 cm2.
Abstract:
A process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the hydrocarbon gas and oxygen gas, and then reacting the gases and cooling the products rapidly. The reactor wall is blanketed with a purge gas stream, introduced through a plurality of feed lines. These feed lines deliver purge gas in a vector direction within a 10° angle of the main flow direction of the reactive gas stream. The purge gas is delivered at multiple stages relative to the main flow direction of the reactive gas stream, and the free cross section of the firing space available to the reactive gas stream, at the height of the feed lines of the purge gas stream, is approximately constant.
Abstract:
A process for partial oxidation of hydrocarbons in a reactor, in which a stream comprising the hydrocarbon and a stream comprising the oxygen are fed to the reactor, wherein both streams fed to the reactor are conducted within the reactor separately through in each case one or more spatially separate lines, these lines having turbulence generators in their interior, owing to which, as a result of the imposed deflection of the flow direction downstream of turbulence generators, a highly turbulent flow field forms, and the streams are then mixed in a mixing zone after exiting from the lines and then converted in a reaction zone.
Abstract:
The present invention provides a process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the starting gases comprising a hydrocarbon-containing stream and an oxygen-containing stream and then mixing them in a mixing zone and, after they have flowed through the burner block, reacting them in the firing space and then cooling the products rapidly, wherein the surface on the firing space side of the burner block is covered with a purge gas stream and this purge gas stream is introduced through the burner block by means of several bores, where the averaged ratio of effective surface area of the burner block to number of these bores in the burner block for the purge gas stream is within a range from 5 to 100 cm2.
Abstract:
Methods comprising: (a) providing a starting mixture comprising at least one hydrocarbon and at least one oxygen source, wherein the starting mixture has a fuel number of at least 4; (b) heating the starting mixture to a temperature of not more than 1400° C. and subjecting it to a single-stage, autothermal, uncatalyzed reaction to form a reaction gas; and (c) subjecting the reaction gas to rapid cooling to form at least one olefin and synthesis gas are described.
Abstract:
A process for preparing acetylene and synthesis gas by partial oxidation of hydrocarbons with oxygen, by first separately preheating the hydrocarbon gas and oxygen gas, and then reacting the gases and cooling the products rapidly. The reactor wall is blanketed with a purge gas stream, introduced through a plurality of feed lines. These feed lines deliver purge gas in a vector direction within a 10° angle of the main flow direction of the reactive gas stream. The purge gas is delivered at multiple stages relative to the main flow direction of the reactive gas stream, and the free cross section of the firing space available to the reactive gas stream, at the height of the feed lines of the purge gas stream, is approximately constant.
Abstract:
A process for partial oxidation of hydrocarbons in a reactor, in which a stream comprising the hydrocarbon and a stream comprising the oxygen are fed to the reactor, wherein both streams fed to the reactor are conducted within the reactor separately through in each case one or more spatially separate lines, these lines having turbulence generators in their interior, owing to which, as a result of the imposed deflection of the flow direction downstream of turbulence generators, a highly turbulent flow field forms, and the streams are then mixed in a mixing zone after exiting from the lines and then converted in a reaction zone.
Abstract:
Supported catalyst comprising a support (S) in which Al2O3 is present in a proportion of at least 75% by weight and rhenium compounds as active component (A), wherein the maximum of the distribution function of the pore diameters in the mesopore range is at from 0.008 to 0.050 μm.
Abstract translation:含有其中Al 2 O 3 N 3的载体(S)的负载型催化剂以至少75重量%的比例存在,铼化合物作为活性组分(A), 其中中孔范围内孔径分布函数的最大值为0.008至0.050μm。
Abstract:
Method of regenerating an Re2O7-doped supported catalyst which has been deactivated by use in the metathesis of a hydrocarbon mixture comprising C2-C6-olefins (C2-6= feed) (deactivated catalyst), which comprises treating the deactivated catalyst with an inert gas (regeneration gas K1) at from 400 to 800° C. and subsequently treating the deactivated catalyst which has been pretreated with regeneration gas K1 with an oxygen-containing gas (regeneration gas K2).
Abstract translation:通过在包含C 2 -C 6烷基的烃混合物的复分解中使用已经失活的Re 2 O 2 O 7重掺合载体催化剂的再生方法, C 6 - 6 - 烯烃(C 2-6)进料)(失活催化剂),其包括用惰性气体处理失活的催化剂(再生 气体K 1),然后用含氧气体(再生气体K 2)处理已经用再生气体K 1预处理的失活催化剂。