Abstract:
A radio frequency identification (“RFID”) method, computer-readable medium, apparatus, and system are provided. In one embodiment, the method acquires dimensions of an item. The dimensions and speed of the item are used to determine the item's location on a conveyor (i.e., to track the item on the conveyor). The location of the item is used to determine which switch RFID reader antenna in a plurality of RFID reader antennas is the most suitable RFID reader antenna to communicate with a transponder located on the item. In other embodiments, the apparatus, system, and computer-readable medium are also provided which perform similar features recited by the above method.
Abstract:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. Advanced high-resolution wavefront control methods and devices are disclosed for use with the PLIIM-based systems in order to reduce the power of speckle-noise patterns observed at the image detections thereof. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type imaging applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
Abstract:
A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital 1D images of objects transported through the 3D digital imaging volume. The image capturing and processing subsystem includes a plurality of illumination and imaging stations. Each station includes a 2D imaging array having optics providing a 3D field of view (FOV) on the 2D imaging array that is projected and extends into the 3D digital imaging volume, and one or more light emitting devices configured together to produce an illumination beam that extends into the 3D FOV of the 2D imaging array. A digital image processing subsystem processing digital 1D images of objects passing through the 3D digital imaging volume, and a system control subsystem which controls and/or orchestrates the coplanar illumination and imaging subsystems during system operation.
Abstract:
A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital 1D images of objects transported through the 3D imaging volume. The image capturing and processing subsystem includes a plurality of coplanar illumination and imaging stations. Each station includes a linear imaging array having optics providing a field of view (FOV) on the linear imaging array that is projected and extends into the 3D imaging volume, and one or more light emitting devices configured together to produce a substantially planar illumination beam (PLIB) that extends in substantially along the same plane as the FOV of the linear imaging array so that each the linear imaging array and corresponding one or more light emitting devices produce at least one coplanar illumination and imaging plane that projects into the 3D imaging volume. A digital image processing subsystem processing digital 1D images of objects passing through the 3D imaging volume, and a system control subsystem controls and/or orchestrates the coplanar illumination and imaging subsystems during system operation.
Abstract:
An automated package dimensioning subsystem comprising a Laser Detecting and Ranging (LADAR-based) scanning apparatus for capturing two-dimensional range data maps of the space above a conveyor structure, along which packages are transported, and an image contour tracing apparatus for extracting package dimension data from the two-dimensional range data maps.
Abstract:
A hand-supportable planar laser illumination and imaging (PLIIM) based device having hand-supportable housing with a light transmission aperture. A linear image formation and detection (IFD) module is mounted within the housing, and has a linear array of image detection elements and also image formation optics with a field of view (FOV). When an object is presented within the FOV, the FOV focuses a linear image of the object onto the linear array. At least one planar laser illumination module (PLIM) is mounted on the support platform, with the linear IFD module, and produces a planar laser illumination beam (PLIB) spatially aligned with respect to the FOV and arranged in a coplanar relationship with at least a portion of the FOV. A laser beam despeckling mechanism is integrated in the device, for reducing speckle-pattern noise observed the linear digital images formed and detected at the linear array of image detection elements.
Abstract:
A hand-supportable planar illumination and imaging (PLIIM) based device having a hand-supportable housing with a light transmission aperture. A linear image formation and detection (IFD) module mounted on the support platform in the housing, and has a linear array of image detection elements and also image formation optics having a field of view (FOV) projectable through the light transmission aperture. When an object is presented in the FOV for illumination and imaging, the FOV focuses a linear image of the object onto the linear array of image detection elements. A plurality of planar illumination modules (PLIMs) are arranged in a rectilinear manner, and produce a planar illumination beam (PLIB) that is spatially aligned with respect to the FOV and arranged in a coplanar relationship with at least a portion of the FOV. Each PLIM includes a visible light emitting diode (LED) and beam forming optics for producing the PLIB.
Abstract:
A planar laser illumination and imaging system for illuminating an object and forming an image thereof. The planar laser illumination and imaging system which comprises an image formation and detection module having a field of view (FOV) focused at an image detecting array. A planar laser illumination array (PLIA) constructed from an plurality of planar laser illumination modules (PLIMs) is arranged in rectilinear manner. Each planar laser illumination module comprises a visible laser diode (VLD), a focusing lens, and a cylindrical optical element arranged therewith to produce a planar laser illumination beam component; and wherein the individual planar laser illumination beam components produced from the plurality of planar laser illumination modules are optically combined to produce a composite substantially planar laser illumination beam having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of the image formation and detection module, so that laser light reflected off an object illuminated by the planar laser illumination beam is focused along the field of view and onto the image detecting array to form an image of the illuminated object.
Abstract:
Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system. Preferably, each planar laser illumination beam component is focused so that the minimum beam width thereof occurs at a point or plane which is the farthest or maximum object distance at which the system is designed to acquire images, thereby compensating for decreases in the power density of the incident planar laser illumination beam due to the fact that the width of the planar laser illumination beam increases in length for increasing object distances away from the imaging optics. By virtue of the present invention, it is now possible to use both VLDs and high-speed CCD-type image detectors in conveyor, hand-held and hold-under type scanning applications alike, enjoying the advantages and benefits that each such technology has to offer, while avoiding the shortcomings and drawbacks hitherto associated therewith.
Abstract:
An automatic bar code symbol reading system provides a hand-supportable laser bar code reading device which can be used in either an automatic hands-on mode of operation, or in an automatic hands-free mode of operation. The system includes a scanner support frame for supporting the hand-supportable device in a user-selected mounting position, and permits complete gripping of its handle portion for use in the hands-on mode of operation. In general, the hand-supportable bar code reading device has long-range and short-range modes of object detection, bar code presence detection and bar code symbol reading. Pursuant to one illustrative embodiment, the long-range mode is automatically selected when the hand-supportable bar code reading device is placed within the scanner support stand during the automatic hands-free mode of operation. When the hand-supportable bar code reading device is picked up from the support stand and used in its hands-on mode of operation, the short-range mode is automatically selected to provide CCD-like scanner emulation. When used in either mode of operation, the automatic bar code reading device is capable of reading, in a consecutive manner, one or more bar code symbols on an object, while preventing multiple reading of the same bar code symbol due to dwelling of the laser scanning beam upon the bar code symbol. The automatic bar code symbol reading system of the present invention is disclosed in several different mounting arrangements at a point-of-sale station, illustrating novel methods of reading bar code symbols using the automatic hand-supportable optical scanning device of the present invention.