Abstract:
A hand-supportable planar laser illumination and imaging (PLIIM) based code symbol reader includes: a hand-supportable housing having light transmission aperture; a linear image formation and detection module having a linear image detection array; and a planar laser illumination beam (PLIB) producing device having at least one visible laser diode (VLD) for producing a planar light illumination beam (PLIB). The code symbol reader further includes image grabber for grabbing digital linear images formed and detected by the image formation and detection module, an image data buffer for buffering the digital linear images grabbed by the image grabber and constructing a two-dimensional image from a series of buffered linear digital images, and an image processing computer for processing the buffered two-dimensional digital image so as to read code symbols graphically represented in the two-dimensional digital linear image. During object illumination and imaging operations, a controller automatically controls the linear image formation and detection module, the PLIB producing device, the image frame grabber, and the image data buffer.
Abstract:
A planar laser illumination and imaging (PLIIM) based engine including; an engine housing having light transmission aperture; an image formation and detection module and having an image detection array and image formation optics with a field of view (FOV) extending from the image detection array, through the light transmission aperture and onto an object moving relative to the engine housing during object illumination and imaging operations; a planar laser illumination beam (PLIB) producing device, and having at least one visible laser illumination source arranged in relation to the image formation and detection module, for producing a planar light illumination beam (PLIB), and projecting the planar light illumination beam through light transmission aperture and oriented such that the plane of the PLIB is coplanar with the field of view of the image formation and detection module so that the object can be simultaneously illuminated by the planar light illumination beam and imaged within the field of view and onto the image detection array for detection as a digital linear image of the object; a laser despeckling mechanism for reducing the coherence of the PLIB during object illumination and imaging operation so that the power of speckle-pattern noise is substantially reduced in digital linear images detected on said image detection array.
Abstract:
A device reduces false positive memory error detections by using a masking unit and sensitivity mask data to exclude unused portions of the memory from the error detection computations. A device includes an error detection unit to read data from the memory and verify data integrity. The sensitivity mask data indicates unused portions of the memory. Unused portions of the memory may correspond with configuration data for unused portions of a programmable device. Each bit of the sensitivity mask data may indicate the usage of one or more bits of the data from the memory. In response to the mask data, the masking unit sets data from the unused portions of the memory to values that do not change the result of the error detection computations. This prevents any errors in data from the unused portions of the memory from raising an error signal.
Abstract:
A wireless code symbol reading system including a wireless hand-supportable code symbol reader in two-way RF communication with a base station operably connected to a host system, by way of an RF-based wireless data communication link having a predetermined RF communication range over which two-way communication of data packets can occur. The wireless hand-supportable code symbol reader is programmed to automatically detect when it is located inside and outside of the predetermined RF communication range. When the wireless reader is inside the RF communication range, then symbol character data is automatically transmitted to the base station, and when the wireless reader is located outside of the RF communication range, then symbol character data is automatically collected and stored in a data packet buffer, until the wireless reader has re-entered its RF communication range.
Abstract:
A tunnel-type digital imaging system for use within retail shopping environments such as supermarkets. The system includes a tunnel configuration arranged about a conveyor structure for transporting objects therethrough, and an image capturing and processing subsystem embodied within the tunnel configuration, for generating a 3D digital imaging volume above the conveyor structure and within the tunnel configuration, for capturing digital images of objects transported through the 3D imaging volume. The image capturing and processing subsystem includes a plurality of coplanar illumination and imaging stations. Each station includes a linear imaging array having optics providing a field of view (FOV) on the linear imaging array that is projected and extends into the 3D imaging volume, and one or more light emitting devices configured together to produce a substantially planar illumination beam (PLIB) that extends in substantially along the same plane as the FOV of the linear imaging array so that each the linear imaging array and corresponding one or more light emitting devices produce at least one coplanar illumination and imaging plane that projects into the 3D imaging volume. A digital image processing subsystem processing digital images of objects passing through the 3D imaging volume, and a system control subsystem controls and/or orchestrates the coplanar illumination and imaging subsystems during system operation.
Abstract:
Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner. Each time the scanned bar code symbol is successfully read during a bar code symbol reading cycle, a new bar code symbol character string is produced, while an indicator light on the hand-supportable housing is actively driven. During the bar code symbol reading cycle, the user actuates the data transmission switch producing a data transmission control activation signal and enabling a currently or subsequently produced symbol character data string to be automatically selected and transmitted to the host system. By virtue of the present invention, automatically-activated hand-supportable bar code symbol readers are now able to accurately read, in an unprecedented manner, bar code symbols on bar code menus, consumer products positioned in crowded point-of-sale environments, and other objects requiring automatic identification and/or information access.
Abstract:
Volatility of a programmable logic device (PLD) or field programmable gate array (FPGA) is selectable to be volatile or nonvolatile. In the volatile mode, configuration or other data of the integrated circuit are lost once power is removed from the integrated circuit. In the nonvolatile mode, configuration or other data is retained even when power is removed from the integrated circuit. Upon power-up, in nonvolatile mode, the integrated circuit does not need external data. In an embodiment, the mode, whether volatile or nonvolatile, may be selected during manufacturing. In other embodiment, the mode may be selected by other means, such as by the user.
Abstract:
A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
Abstract:
Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner. Each time the scanned bar code symbol is successfully read during a bar code symbol reading cycle, a new bar code symbol character string is produced, while an indicator light on the hand-supportable housing is actively driven. During the bar code symbol reading cycle, the user actuates the data transmission switch producing a data transmission control activation signal and enabling a currently or subsequently produced symbol character data string to be automatically selected and transmitted to the host system. By virtue of the present invention, automatically-activated hand-supportable bar code symbol readers are now able to accurately read, in an unprecedented manner, bar code symbols on bar code menus, consumer products positioned in crowded point-of-sale environments, and other objects requiring automatic identification and/or information access.
Abstract:
Disclosed is laser beam scanning apparatus in the form of an electronically-controlled mechanically-damped off-resonant laser beam scanning mechanism. The scanning mechanism comprises an etched scanning element having a small flexible gap region of closely-controlled dimensions disposed between an anchored base portion and a laser beam deflecting portion The light beam deflecting portion supports a permanent magnet and a light beam deflecting element (e.g., mirror or hologram). A reversible magnetic force field producing device (e.g., an electromagnet) is placed in close proximity with the permanent magnet so that it may be forcibly driven into oscillation in response to electrical current flowing through the electromagnet. The resonant frequency of oscillation of the laser beam deflecting portion relative to the anchored base portion is determined by the closely controlled dimensions of the flexible gap region set during manufacture. The steady-state frequency of oscillation of the laser beam deflecting portion is determined by the frequency of polarity reversal of the electromagnet, which is electronically controlled by the polarity of electrical current supplied thereto. In the illustrative embodiments, the forcing frequency of the electromagnet is selected to be at least ten percent off (i.e., greater or less than) the natural resonant frequency of the laser beam deflecting portion of the scanning element. The steady-state frequency of oscillation can be set at the time of manufacture to be any one of a very large range of values (e.g., 25-127 Hz) for use in both low-speed and high-speed laser scanning systems.