Abstract:
An efficient coding and modulation system for transmission of digital data over plastic optical fibres is disclosed. The digital signal is coded by a three-level coset coding. The spectral efficiency of the system is configurable by selecting the number of bits to be processed in each of the levels. The first level applies to the digital data a binary BCH coding and performs coset partitioning by constellation mapping and lattice transformations. Similarly, second level applies another binary BCH coding, which may be performed selectably in accordance with the desired configuration by two BCH codes with substantially the same coding rate, operating on codewords of different sizes. The third level is uncoded. The second and third levels undergo mapping and lattice transformation. After an addition of the levels, a second-stage lattice transformation is performed to obtain a zero-mean constellation. The symbols output from such three-level coset coder are then further modulated.
Abstract:
The system enables bidirectional communication between a center and a plurality of users via a power line network and is characterized in that low and high speed communication can be established to provide multiple high-quality services to the users. The system comprises a performing network and frequency time-sharing and/or orthogonal frequency-division multiple access (OFDMA).
Abstract:
This process applies to a number of user kits (A, B, . . . X) and a head-end kit (1) communicating over the electricity network (2) using an upstream channel and a downstream channel. In essence, the process comprises accessing by multiple user kits (A, B, . . . X) in the upstream channel and the sending of multiple information frames by the head-end (1) in the downstream channel simultaneously applying OFDMA/TDMA/CDMA multiplexing and dynamically assigning each carrier so as to maximize transmission capacity in both the upstream and downstream channels. In turn, the process allows the adjustment of the quality of service according to the type of information and the user that requires the transmission and the dynamic allocation of bandwidth through constantly calculating the signal-to-noise ratio.
Abstract:
High throughput system for in vivo screens on vertebrate larvae. The system includes a source of vertebrate larvae in a liquid medium and loading tube means for aspirating a larva. A detector assembly is provided to differentiate passage of a larva from bubbles and/or debris. An imaging means is provided for both confocal imaging and wide-field fluorescence imaging of the larva. A laser is provided for optical manipulation of the larva.
Abstract:
High throughput system for in vivo screens on vertebrate larvae. The system includes a source of vertebrate larvae in a liquid medium and loading tube means for aspirating a larva. A detector assembly is provided to differentiate passage of a larva from bubbles and/or debris. An imaging means is provided for both confocal imaging and wide-field fluorescence imaging of the larva. A laser is provided for optical manipulation of the larva.
Abstract:
The invention relates to a signalling method using orthogonal frequency division multiplexing (OFDM), based on a preamble comprising N dedicated carriers (frequency pilots), the position and modulation of which is defined by one or more concatenated complementary sequences of length N. Complementary sequences are those for which the sum of the autocorrelations thereof is zero except for zero shift, i.e. a Krönecker delta. The main purpose of said preamble is to signal the basic properties of the transmitted signal and to provide a first estimation at the moment of time and frequency synchronisation. The preamble is multiplexed or sequenced temporally with the transmitted data using OFDM prior to the application of the inverse Fourier transform by the inverse fast Fourier transform (IFFT) block.
Abstract:
A selfcalibrated sensor module for inkjet printing devices includes a new circuitry and a new calibration method to provide the best output signal independently of optical component functionality variations and external light source influences. The circuitry for processing the photodetector output signal is designed to process that signal by a bank of amplifiers or by an amplifier of variable gain and includes an input for adding an offset to the signal. The calibration system, implemented in a processing unit, calibrates the sensor module, firstly finding the level of light that should be applied to the LEDs to maximize it so as to grant the best signal possible, in terms of the signal to noise ratio (SNR), Secondly, it determines which amplification factor will be used in order to ensure that the resulting sampled signal is not saturated. Thirdly, it determines the necessary offset to be added to the signal to center it in the dynamic margin of the ADCs.
Abstract:
An efficient coding and modulation system for transmission of digital data over plastic optical fibers is disclosed. The digital signal is coded by a three-level coset coding. The spectral efficiency of the system is configurable by selecting the number of bits to be processed in each of the levels. The first level applies to the digital data a binary BCH coding and performs coset partitioning by constellation mapping and lattice transformations. Similarly, second level applies another binary BCH coding, which may be performed selectably in accordance with the desired configuration by two BCH codes with substantially the same coding rate, operating on codewords of different sizes. The third level is uncoded. The second and third levels undergo mapping and lattice transformation. After an addition of the levels, a second-stage lattice transformation is performed to obtain a zero-mean constellation. The symbols output from such three-level coset coder are then further modulated.