Abstract:
An imaging capsule configured to be swallowed to scan the gastrointestinal tract of a person from the inside, including a radiation source providing X-Ray and gamma radiation for scanning the gastrointestinal tract, a pressure sensor for measuring the internal pressure in the imaging capsule; and wherein the imaging capsule is configured to control the emission of radiation from within the imaging capsule responsive to the measurements of the pressure sensor.
Abstract:
A colon imaging system, including an imaging capsule, having: a. a radiation source providing X-Ray and gamma radiation with energies sufficient to induce X-Ray fluorescence from nanoparticles that adhere to cancerous tissue, and which were administered to a patient in a solution prior to examining the colon with the imaging capsule; b. a detector for detecting particle energy of particles emitted responsive to the provided radiation and forming count information disclosing a number of particles detected for each energy level; c. a transceiver for transferring the count information to an external computer for analysis, and also having a computer for constructing images of an inside of the colon based on the count information; wherein the images provide an indication of locations in the colon of which the nanoparticles adhere to.
Abstract:
A colon imaging system, including an imaging capsule, having: a. a radiation source providing X-Ray and gamma radiation with energies sufficient to induce X-Ray fluorescence from nanoparticles that adhere to cancerous tissue, and which were administered to a patient in a solution prior to examining the colon with the imaging capsule; b. a detector for detecting particle energy of particles emitted responsive to the provided radiation and forming count information disclosing a number of particles detected for each energy level; c. a transceiver for transferring the count information to an external computer for analysis, and also having a computer for constructing images of an inside of the colon based on the count information; wherein the images provide an indication of locations in the colon of which the nanoparticles adhere to.
Abstract:
A fail safe concealment mechanism for a radiation imaging capsule, including, a collimator having a first area that blocks radiation and an second area that releases radiation, a radiation source that is initially positioned inside the collimator in the area that blocks radiation, a linear mechanism that moves the radiation source inside the collimator to the area that releases radiation when power is provided to the mechanism and automatically returns the radiation source to the area that blocks radiation when power is not provided to the mechanism.
Abstract:
A fail safe concealment mechanism for a radiation imaging capsule, including, a collimator having a first area that blocks radiation and an second area that releases radiation, a radiation source that is initially positioned inside the collimator in the area that blocks radiation, a linear mechanism that moves the radiation source inside the collimator to the area that releases radiation when power is provided to the mechanism and automatically returns the radiation source to the area that blocks radiation when power is not provided to the mechanism.
Abstract:
A system for estimating the position of an imaging capsule that examines the gastrointestinal tract of a user, including an imaging capsule for examining inside the user; and a recorder for communicating with the imaging capsule from outside the user. The imaging capsule includes a controller for controlling functionality of the imaging capsule, a transceiver for communication with the recorder and a coil for transmission of electromagnetic signals. The recorder includes a controller for controlling functionality of the recorder, a transceiver for communication with the imaging capsule and a coil for receiving electromagnetic signals from the coil of the imaging capsule. Wherein the recorder determines the location of the imaging capsule based on measurements of the amplitude of the electromagnetic signals transmitted by the coil in the imaging capsule.
Abstract:
A capsule for examining the gastrointestinal tract, including, a capsule shell enclosing the capsule, wherein said capsule shell is designed to be swallowed by a user to traverse the user's gastrointestinal tract internally, a strain gauge coupled to the capsule shell for measuring strain forces exerted on the capsule shell, a control for receiving the measurements from the strain gauge and responding to the measurements.
Abstract:
An imaging capsule activating system includes a capsule containing a radiation source and an arrangement with the radiation source mounted thereon. The arrangement is configured to selectively allow emission of radiation from the radiation source. A blocking arrangement is configured to selectively block emission of radian from the radiation source. In a rest position, the emission of radiation from the arrangement is blocked. A movement arrangement configured to move the blocking arrangement relative to the arrangement. A controller operates the radiation source and the blocking arrangement. An activation coil is electrically coupled with the controller and has an initial configuration without current flow. An external activating coil receives the imaging capsule and is operable to inductively induce current flow in the activation coil within the capsule.
Abstract:
An imaging capsule including, a radiation source, a collimator that provides a collimated beam from the radiation source, at least one detector configured to detect particles resulting from X-ray fluorescence and/or Compton backscattering in response to the collimated beam to reconstruct images of a user's gastrointestinal tract, wherein the imaging capsule is configured to identify an inflamed area, within the user's gastrointestinal tract, based on a count of the detected particles and initiate actions responsive to detecting the inflamed area.
Abstract:
An imaging capsule, including a radiation source, a collimator that provides a collimated beam from the radiation source, a detector configured to detect particles resulting from X-ray fluorescence and/or Compton backscattering in response to the collimated beam, a motor to rotate the collimator and detector around an axle to scan a partial or full inner circumference of a user's colon with radiation, wherein the motor comprises a segmented commutator that is fed with a power signal via brush contacts; and wherein the motor provides a pulsed output signal based on mechanical switching of the segmented commutator on the brush contacts, providing an indication of the rotation angle of the motor as a function of time.